Ходовая часть        30.06.2023   

Зарядное устройство на микроконтроллере. Автоматическое ЗУ на МК ATmega16A Автоматическое зарядное устройство на микроконтроллере atmega

С недавних пор скопилось много аккумуляторов - как кадмиевых, так и никель марганцевых. Для этого купил себе устройство посерьезнее, так как заряжать надо часто, да и аккумуляторы изнашивать трансформаторным ЗУ не очень хочется. Это для пальчиковых аккумуляторов содержит микросхему – микропроцессор F9444, который контролирует заряд аккумуляторов по парам, не допуская их перезарядки и поддерживает заряд только до нужного уровня. Можно собрать и самому подобное устройство, если спаять F9444 согласно . Правда цена микросхемы немалая – 130 руб.

Данные 8-разрядные Flash микроконтроллеры S3F9444 производит фирма Samsung. Контроллеры S3F9444 ориентированы на использование в тех случаях, для которых требуются ADC, о чем говорит следующая за цифрой 9 (8 разрядов) цифра 4 (ADC), несложные таймеры/счетчики и PWM. Особенностью микроконтроллеров S3F9444 является использование ядра CPU SAM88RCRI, младшей версии типового ядра SAM8 c архитектурой, характерной для 8-разрядных CPU фирмы Zilog.

Отличительными особенности архитектуры:

Регистровая архитектура, позволяющая использовать в качестве аккумулятора любой регистр и сокращающая время выполнения команд и необходимый объем памяти программ

Программный стек обеспечивает существенно большую глубину при вызовах подпрограмм и прерываниях, чем аппаратный стек

Конвейерная выборка и выполнение команд


Сокращение функциональных возможностей ядра SAM88RCRI, по сравнению с типовым ядром, привело к сокращению размеров кристалла, снижению потребления, снижению стоимости микроконтроллера в целом. Другим следствием сокращения функциональных возможностей стало уменьшение количества команд до 41 команды. Микроконтроллеры F9444 и оснащены Flash памятью емкостью 4 Кбайта и регистровым файлом, в котором 208 байтов могут быть использованы в качестве регистров общего назначения. Длительность командного цикла составляет 400 нс при fOSC = 10 МГц. Диапазон рабочих напряжений простирается от 2,0 (задаваемый уровень срабатывания схемы LVR) до 5,5 В. Предусмотрены режимы энергосбережения Power-Down и Idle. Типовое потребление при частоте тактирования CPU 10 МГц составляет 5 мА и в режиме Stop всего 0,1 мкА.

В состав встроенной периферии входят:

9-канальный 10-разрядный аналого-цифровой преобразователь (ADC)

8-разрядный широтно-импульсный модулятор (PWM) с максимальной частотой 156 кГц (6-разрядная база + два разряда расширения)

8-разрядный базовый таймер (для функций сторожевого таймера) и 8-разрядный таймер/счетчик с режимом измерения интервалов времени

Три порта I/O (всего до 18 выводов) с конфигурированием каждого вывода. Каждый вывод может управлять LED (типовой ток 10 мА)

Встроенная Smart функция, определяющая стартовые условия работы прибора (разрешение/запрет схемы LVR, используемы источники сигнала тактирования)


Как только будет закончена, аккумуляторы начнут заряжаться током меньше в несколько раз от зарядного, при этом можно не беспокоится что батареи перезарядятся перегреются взорвуться или загорятся, устройство само подбирает нужный ток в зависимости от батарей и их типа.

Так же в устройстве есть функция разряда батарей, что позволяет разряжать их при необходимости, а так же все это еще и отображают индикаторы светодиоды. Устройство поставляется в коробке, с блоком питания (который можно использовать и для других устройств когда не используется зарядка).


Без проблем заряжает даже аккумуляторы с большой ёмкостью 2500-2700 мА, и не за сутки, как в моем старом заряднике, а часа за 4, точно не засекал. При этом батареи сильно даже и не греются.

К статье прилагается фото зарядного устройства и его внутренностей, а так же по эксплуатации с таблицей емкостей и режимами индикации. С Вами был тов. Vanesex.

Описание


Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A. Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ - его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.

Рассмотрим основные режимы работы устройства для заложенных в программу предустановок (профилей).

1. Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
- первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
- второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
- третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач.
- четвёртый этап - «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это- четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.

2. Режим тренировки (десульфатации) - меню «Тренировка». Здесь осуществляется тренировочный цикл:
10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд.

3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.

4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда). Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.

Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля - П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.

Значения настроек:


1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики ниже.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию - 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.

Алгоритм заряда - IUoU



Алгоритм заряда - IUIoU



Выбор и переделка блока питания

В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это - практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.

Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4).

Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме - значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.

Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3. На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом - чуть позже. Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы


Все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем.

Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1,EP1 ,R13.

При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

СХЕМЫ:


первую часть схемы - (Переделка БП)
вторую часть схемы - (Микроконтроллерная часть)

Ниже в архиве имеется проект в протеусе, точнее его микроконтроллерная часть.


Режимы работы (скрины):

Тут приведена только часть скринов, поиграться можете сами, скачав проект протеуса.


Детали и конструкция


Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.

Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5%. От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.

Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.

Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Буззер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – WH1602 или аналогичный, на контроллере HD44780 , KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр

Печатная плата

Файлы печатных плат лежат ниже в архиве, есть два варианта ПП: для DIP элементов и вариант в SMD.



Программа


Конфигурационные биты (фузы) устанавливаются следующие:

Запрограммированы (установлены в 0):

CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1

Все остальные - незапрограммированы (установлены в 1).

Наладка


Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.

Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Файлы проекта (прошивки и проект в протеусе).
файлы печатных плат и схемы.

По материалам сайта

В этой статье я расскажу, как из компьютерного блока питания формата АТ/АТХ и самодельного блока управления изготовить довольно-таки «умное» зарядное устройство для свинцово-кислотных аккумуляторных батарей. К ним относятся т.н. «УПС-овые», автомобильные и другие АКБ широкого применения.

Описание
Устройство предназначено для зарядки и тренировки (десульфатации) свинцово-кислотных АКБ ёмкостью от 7 до 100 Ач, а также для приблизительной оценки уровня их заряда и емкости. ЗУ имеет защиту от неправильного включения батареи (переполюсовки) и от короткого замыкания случайно брошенных клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей «добивкой» до 100%-го уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор (настраиваемые профили) или выбрать уже заложенные в управляющей программе. Конструктивно зарядное устройство состоит из блока питания АТ/АТХ, который нужно немного доработать и блока управления на МК ATmega16A. Всё устройство свободно монтируется в корпусе того же блока питания. Система охлаждения (штатный кулер БП) включается/отключается автоматически.
Достоинства данного ЗУ - его относительная простота и отсутствие трудоёмких регулировок, что особенно актуально для начинающих радиолюбителей.
]1. Режим зарядки - меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:
- первый этап- зарядка стабильным током 0.1С до достижения напряжения14.6В
- второй этап-зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С
- третий этап-поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С - ёмкость батареи в Ач.
- четвёртый этап - «добивка». На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала.
Для стартерных АКБ (от 45 Ач и выше) применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается «добивка». Это- четвёртый этап. Процесс заряда проиллюстрирован графиками рис.1 и рис.2.
2. Режим тренировки (десульфатации) - меню «Тренировка». Здесь осуществляется тренировочный цикл:
10 секунд - разряд током 0,01С, 5 секунд - заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее - обычный заряд.
3. Режим теста батареи. Позволяет приблизительно оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ.
4. Контрольно-тренировочный цикл (КТЦ). Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С - 0.05С (ток 10-ти или 20-ти часового разряда).
Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню.
Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля - П1 и П2. Настроенные параметры сохраняются в энергонезависимой памяти (EEPROM-е).
Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM.
Значения настроек:
1. «Алгоритм заряда». Выбирается IUoU или IUIoU. См. графики на рис.1 и рис.2.
2. «Емкость АКБ». Задавая значение этого параметра, мы задаем ток зарядки на первом этапе I=0.1C, где С- емкость АКБ В Ач. (Таким образом, если нужно задать ток заряда, например 4.5А, следует выбрать емкость АКБ 45Ач).
3. «Напряжение U1». Это напряжение, при котором заканчивается первый этап зарядки и начинается второй. По умолчанию задано значение 14.6В.
4. «Напряжение U2». Используется только, если задан алгоритм IUIoU. Это напряжение, при котором заканчивается третий этап зарядки. По умолчанию - 16В.
5. «Ток 2-го этапа I2». Это значение тока, при котором заканчивается второй этап зарядки. Ток стабилизации на третьем этапе для алгоритма IUIoU. По умолчанию задано значение 0.2С.
6. «Окончание заряда I3». Это значение тока, по достижению которого зарядка считается оконченной. По умолчанию задано значение 0.01С.
7. «Ток разряда». Это значение тока, которым осуществляется разряд АКБ при тренировке зарядно-разрядными циклами.


Выбор и переделка блока питания.

В нашей конструкции мы используем блок питания от компьютера. Почему? Причин несколько. Во–первых, это - практически готовая силовая часть. Во-вторых, это же и корпус нашего будущего устройства. В-третьих, он имеет малые габариты и вес. И, в-четвёртых, его можно приобрести практически на любом радиорынке, барахолке и в компьютерных сервисных центрах. Как говорится, дёшево и сердито.
Из всего многообразия моделей блоков питания нам лучше всего подходит блок формата АТX, мощностью не менее 250 Вт. Нужно только учесть следующее. Подходят лишь те блоки питания, в которых применён ШИМ-контроллер TL494 или его аналоги (MB3759, КА7500, КР1114ЕУ4). Можно также применить и БП формата AT, только придется изготовить еще маломощный блок дежурного питания (дежурку) на напряжение 12В и ток 150-200мА. Разница между AT и ATX – в схеме начального запуска. АТ запускается самостоятельно, питание микросхемы ШИМ–контроллера берётся с 12-вольтовой обмотки трансформатора. В ATX для начального питания микросхемы служит отдельный источник 5В, называемый «источник дежурного питания» или «дежурка». Более подробно о блоках питания можно прочитать, например, а переделка БП в зарядное устройство неплохо описана
Итак, блок питания имеется. Сначала необходимо его проверить на исправность. Для этого его разбираем, вынимаем предохранитель и вместо него подпаиваем лампу накаливания 220 вольт мощностью 100-200Вт. Если на задней панели БП имеется переключатель сетевого напряжения, то он должен быть установлен на 220В. Включаем БП в сеть. Блок питания АТ запускается сразу, для ATX нужно замкнуть зелёный и чёрный провода на большом разъёме. Если лампочка не светится, кулер вращается, а все выходные напряжения в норме - значит, нам повезло и наш блок питания рабочий. В противном случае, придётся заняться его ремонтом. Оставляем лампочку пока на месте.
Для переделки БП в наше будущее зарядное устройство, нам потребуется немного изменить «обвязку» ШИМ-контроллера. Несмотря на огромное разнообразие схем блоков питания, схема включения TL494 стандартная и может иметь пару вариаций, в зависимости от того, как реализованы защиты по току и ограничения по напряжению. Схема переделки показана на рис.3.


На ней показан только один канал выходного напряжения: +12В. Остальные каналы: +5В,-5В, +3,3В не используются. Их обязательно нужно отключить, перерезав соответствующие дорожки или выпаяв из их цепей элементы. Которые, кстати, нам могут и пригодиться для блока управления. Об этом - чуть позже. Красным цветом обозначены элементы, которые устанавливаются дополнительно. Конденсатор С2 должен иметь рабочее напряжение не ниже 35В и устанавливается взамен существующего в БП. После того, как «обвязка» TL494 приведена к схеме на рис.3, включаем БП в сеть. Напряжение на выходе БП определяется по формуле: Uвых=2,5*(1+R3/R4) и при указанных на схеме номиналах должно составлять около 10В. Если это не так, придется проверить правильность монтажа. На этом переделка закончена, можно убирать лампочку и ставить на место предохранитель.

Схема и принцип работы.

Схема блока управления показана на рис.4.


Она довольно проста, так как все основные процессы выполняет микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4,C9,R7,C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера - встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10R11, Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5R6R10R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения - на элементах VD1,EP1 ,R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда (режим тренировки) и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

Детали и конструкция.

Микроконтроллер. В продаже обычно встречаются в корпусе DIP-40 или TQFP-44 и маркируются так: ATMega16А-PU или ATMega16A-AU. Буква после дефиса обозначает тип корпуса: «P»- корпус DIP, «A»- корпус TQFP. Встречаются также и снятые с производства микроконтроллеры ATMega16-16PU, ATMega16-16AU или ATMega16L-8AU. В них цифра после дефиса обозначает максимальную тактовую частоту контроллера. Фирма- производитель ATMEL рекомендует использовать контроллеры ATMega16A (именно с буквой «А») и в корпусе TQFP, то есть, вот такие: ATMega16A-AU, хотя в нашем устройстве будут работать все вышеперечисленные экземпляры, что и подтвердила практика. Типы корпусов отличаются также и количеством выводов (40 или 44) и их назначением. На рис.4 изображена принципиальная схема блока управления для МК в корпусе DIP.
Резистор R8 –керамический или проволочный, мощностью не менее 10 Вт, R12- 7-10Вт. Все остальные- 0.125Вт. Резисторы R5,R6,R10 и R11 нужно применять с допустимым отклонением 0.1-0.5% . Это очень важно! От этого будет зависеть точность измерений и, следовательно, правильная работа всего устройства.
Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В.
Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2, Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Буззер EP1- со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13.
Жидкокристаллический индикатор – WH1602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр
Программа
Управляющая программа содержится в папке «Программа» Конфигурационные биты (фузы) устанавливаются следующие:
Запрограммированы (установлены в 0):
CKSEL0
CKSEL1
CKSEL3
SPIEN
SUT0
BODEN
BODLEVEL
BOOTSZ0
BOOTSZ1
все остальные - незапрограммированы (установлены в 1).
Наладка
Итак, блок питания переделан и выдает напряжение около 10В. При подключении к нему исправного блока управления с прошитым МК, напряжение должно упасть до 0.8..15В. Резистором R1 устанавливается контрастность индикатора. Наладка устройства заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5,R6,R10,R11,R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично - калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 сек. устройство перейдет в главное меню.
Калибровка окончена. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком - либо КУ сильно отличаются от нуля, нужно применить (подобрать) другие резисторы делителя R5,R6,R10,R11,R8, иначе в работе устройства возможны сбои. При точных резисторах (с допуском 0,1-0,5%) поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.
Весь материал одним архивом можно скачать

Все технические вопросы на [email protected]
Схему и печатную плату скачиваем отсюда.
Силовой внешний транзистор IRF540N и вентилятор в комплект не входит.

Любой автовладелец рано или поздно сталкивается с задачей заряда своего аккумулятора. Это бывает по разным причинам. Например при похолоданиях, когда емкость батареи падает из-за низкой температуры окружающей среды. Либо если батарея долго стояла без использования и напряжение на ней упало до критической отметки. Или она просто состарилась. В таких случаях часто используют купленное зарядное устройство(ЗУ), либо самодельное ЗУ изготовленное своими руками.

Часто автовладельцы изготавливают ЗУ не потому что, отсутствуют деньги на приобретение готового, а потому что, сделать своими руками что то, это очень интересно и увлекательно и полезно. По этой причине интернет завален многочисленными схемами зарядных устройств, от простейших на одном транзисторе до сложнейших с управлением на микроконтроллерах.

Однако важно помнить, что все таки правильный заряд аккумуляторной батареи это сложный электрохимический процесс. И зачастую простые радиолюбительские схемы не в состоянии отследить важнейшие праметры заряда. Токи, напряжение подъема и спада, временные интервалы, отключение батареи в конце цикла заряда и др. процессы. И частое использование таких не совсем корректных схем, может привести к значительному сокращению жизни батареи. Собрать же более сложное ЗУ порой бывает не под силу каждому.

Данная плата поможет сократить разрыв, между желанием и возможностью сделать свое ЗУ. Плата представляет собой полуфабрикат ЗУ автомобильной батареи. В данном полуфабрикате уже реализована самая сложная часть зарядного устройства, а именно микроконтроллероное управление процессом заряда. Сердце, платы это микроконтроллер Atmega88. Как известно сам микроконтроллер ничего не может делать, так как это программируемая микросхема. И чтобы устройство управляемое микроконтроллером начало работать, необходимо написать программу и залить ее в чип. Сделать это не так просто, нужен и опыт и знание в написании программ. Онако этот самый сложный этап, уже реализован в плате, остается только правильно собрать оставшуюся часть схемы. И вот тут автолюбитель уже может приложить сою руку, навыки и умение. Итак что же останется сделать после приобретения платы?

1. Подключить питание к плате (17-24B, не менее 8А).

2. Подключить силовой в согласии со схемой.

Данное зарядное устройство предназначено для независимой автоматической зарядки трёх малогабаритных АКБ, размера ААА, АА. Весь процесс зарядки индицируется светодиодами. Если аккумулятор не разряжен до 1-го вольта, то ЗУ проведёт его разрядку и только потом начнётся зарядка, по окончании которой ЗУ проверит работоспособность аккумулятора, и если он будет неисправен, то подаст соответствующий сигнал.
За основу своей конструкции, я взял схему из журнала «Радио» № 10 за 2007 год - «Зарядное устройство на микроконтроллере PIC12F675», стр. 33-35.

Схема зарядного устройства и схема блока питания, приведены ниже на рисунках 1 и 2. В оригинальном зарядном устройстве, был использован импульсный блок питания на микросхеме TNY264, который подробно описан в журнале "Радио" за 2006 год, стр. 33-34, и в качестве которого можно использовать любой подходящий блок питания, с выходным напряжением 9 - 12 вольт, и током нагрузки от 1,5 ампера.

Рисунок 1.
Схема электрическая принципиальная.

Рисунок 2.
Схема электрическая принципиальная блока питания.

Программа для применённого в схеме микроконтроллера PIC12F675, постоянно дорабатывается. На данное время есть версия прошивки ZU_12F675_V_6.5.1. Я прошил версией ZU_12F675_V_6.4. Работает нормально. В прикреплённом архиве имеются все эти прошивки.
Данное зарядное устройство так же можно собрать и на микроконтроллере PIC12F683, программа для него написана пользователем kpmic с форума, ссылка на который приведена ниже и основательно отличается от версий для МК 12F675.
На данном микроконтроллере я работу устройства не проверял, а прошивка для него также имеется в прикреплении.
Да, схема и плата при применении данного микроконтроллера переделки не требует, отличие от версий для МК 12F675
измерение напряжения производится по прерыванию АЦП..

Работа схемы.

После подачи питающего напряжения, МК DD1 последовательно проверяет наличие подключенных к ячейкам аккумуляторов. При отсутствии напряжения на гнезде XS1 - МК DD1 "делает вывод”, что аккумулятор не установлен и переходит к анализу состояния следующей ячейки. Когда аккумулятор подключен, MK DD1 измеряет его напряжение, и если оно более 1 В. ячейка включается на режим разрядки.
На выводе 5 регистра DD2 появляется высокий уровень напряжения, открывается транзистор 1VT3, и через него и резистор 1R8 протекает ток разрядки около 100 мА, а светодиод 1HL2 начинает светить, индицируя этот режим.
Как только напряжение аккумулятора станет менее 1 В, МК DD1 выключит режим разрядки и светодиод 1HL2 погаснет. Высокий уровень появится на выводе 6 регистра DD2, откроются транзисторы 1VT1 и 1VT2, начнется зарядка аккумулятора и загорится светодиод 1HL1.
В этом режиме МК DD1 периодически измеряет напряжение на аккумуляторе, и когда оно достигнет значения 1,45 В, он начинает проверять возрастает напряжение или нет. Когда напряжение перестает увеличиваться, режим зарядки прекращается и кратковременно включается режим разрядки (загорается светодиод 1HL2) и измеряется напряжение на аккумуляторе. Если оно будет 1,1 В и менее, что свидетельствует о неудовлетворительном состоянии аккумулятора, светодиод 1HL2 станет мигать.

При подключении к ЗУ аккумулятора, напряжение на котором менее 1 В, режим зарядки включается сразу.
Для охлаждения элементов ЗУ применен вентилятор М1, который начинает работать при включении режима зарядки любого из аккумуляторов. Так как на него поступает напряжение питания меньше номинального (примерно 8,5 В), вращается он медленно, но производительности достаточно для охлаждения устройства. После окончания зарядки всех аккумуляторов вентилятор прекращает работу, а светодиод HL1 зеленого цвета свечения начинает мигать, показывая, что ЗУ можно отключить от сети.

ЗУ собрал на печатке, которую сделал по размерам имеющегося корпуса

Рисунок 3.
Печатная плата ЗУ.

При номиналах 1R2 24Ома - ток заряда около 0,22А и 1R8 10 Ом - ток разряда - 0,1А. Если нужны другие токи (под конкретный АКБ), то необходимо подбирать эти резисторы.

При прошивке МК особое внимание об-ратить на калибровочный байт, прошитый на заводе. Перед программированием необходимо прочитать содержимое его памяти. В конце последней строки вместо 3FFF будет 34ХХ это и есть байт, после загрузки hex в буфер программы эту константу нужно вернуть на место вручную ! Ели затереть калибровочный байт, ЗУ не будет работать.

Ниже на рисунке 4, он обведён красным квадратом.

Рисунок 4.
Скрин с калибровочным байтом.

Если собрано все правильно, детали исправные, МК прошит как говорилось раньше, то ЗУ начинает работать сразу.
В процессе прогонки (проверки работоспособности, проверка max тока потребления, чтобы определиться с блоком питания) проводил заряд-разряд АКБ на всех каналах по раздельно и вместе.

У применённой мной версии прошивки, после включения устройства - кратковременно мигают светодиоды разряда.
Если напряжение больше 1 V - включается разряд, загораются светодиоды разряда и светодиод индикации включения.
Желтый (1HL2) - разряд до 0,9 V, красный (1HL1) - заряд, напряжение зависит от состояния аккумулятора, чем хуже аккумулятор, тем выше напряжение, может доходить до 2,5 V (зависит от внутреннего сопротивления аккумулятора).
После окончания заряда, на 10 сек. включается желтый (разряд) и измеряется напряжение на аккумуляторе, и если оно упало до 1,1 вольта (и ниже), то мигает желтый светодиод. Аккумулятор в таком случае можно выкинуть или использовать в пультах управления. Хватает на пару месяцев.
При тестировании использовал свой лабораторный БП:

Рисунок 5.
Лабораторный БП.

Зеленый (HL1) включается при отсчете минутных интервалов, вспыхивает каждую минуту.
Так как устройство предназначенного для длительной работы (полный цикл заряд-разряд АКБ 2,8 А/ч занял около 15 часов), то желательно проконтролировать температурный режим силовых элементов (1DA1, 1VT2 во всех каналах) в подготовленном Вами корпусе.
Я сначала установил 1VT2 такие, как по схеме - КТ973, но в процессе работы «уж больно сильно они грелись» - до 70С. Пришлось поставить по мощнее - TIP146 (по схеме Дарлингтона, составные, аналог КТ825). Можно было в принципе оставить и КТ973, только желательно предусмотреть для них теплоотвод.
7805 тоже порядочно греются, если есть возможность, то их тоже лучше ставить на радиатор (все три на общую пластину через изолятор).

После всех тестов определился с параметрами необходимого БП, который должен иметь напряжение 9,5 V, и с током нагрузки 1,5 А.
Сначала пытался использовать и «китайские» малогабаритные БП, потом принял решение собирать ИБП по подобию в оригинале, на основе микрух TNY267PN (имеются в наличии). При проектировании использовал программу PIExpertSuite. Данная прога очень упрощает изготовление ИБП.
Вот скрин рабочего проекта:

Рисунок 6.
Скрин рабочего проекта схемы БП.

Рисунок 7.
Спецификация (список элементов).

Схема электрическая принципиальная, применённого мной в устройстве блока питания.

Рисунок 8.
Схема блока питания.

Программа PIExpertSuite очень удобная для проектирования импульсных блоков питания (правда, только на основе подобных микрух) и дает все рекомендации в использовании и применении компонентов, а также и изготовлении импульсного трансформатора.

Изготовил плату ИБП

Рисунок 10.
Печатная плата ИБП.

Собрал, проверил в работе.

Рисунок 11.
Собранная конструкция блока питания.

При изготовлении ЗУ обратил внимание, что в схеме есть неточности: вывод 4 (GP3/MCLR) DD1 подключить к плюсу питания через резистор 1 к; перепутаны ноги DD1 5, 7 - это 1-й и 3-й канал (просто поменять местами при изготовлении платы).

Рисунок 12.
Плата БП в корпусе.

Рисунок 13.
Плата ЗУ в крышке корпуса.

Рисунок 14.
Компоновка устройства.

По данному ЗУ есть форум журнала "Радио", где обсуждаются некоторые вопросы по повторению данной конструкции…

Если кто-то заинтересуется данной конструкцией, и в процессе сборки, или настройки возникнут какие либо вопросы, то задавайте их на форуме. Чем смогу - обязательно помогу и отвечу на вопросы.

В прикреплённом вложении содержатся все необходимые файлы для сборки ЗУ.

Архив для статьи.