Запчасти         15.06.2022   

Типы прямолинейного движения. Кинематика прямолинейного движения

Виды движения (равномерное, равноускоренное) и их графическое описание

По форме траектории движение делится на криволинейное (траектория движения тела кривая линия) и прямолинейное (траектория движения тела прямая линия).

При движении тела по прямолинейной траектории модуль вектора перемещения всегда совпадает с пройденным путём. При движении тела по криволинейной траектории модуль вектора перемещения всегда меньше пройденного пути

Равномерное прямолинейное движение.

Прямолинейным равномерным движением называют движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения.

Скорость равномерного прямолинейного движения - это физическая векторная величина, равная отношению перемещения тела S за любой промежуток времен к значению этого промежутка t:

v х =S/t

Скорость - это физическая величина, показывающая быстроту изменения координаты.

Единицы измерения скорости - метры в секунду

Уравнение равномерного движения (перемещение тела при равномерном движении):

S=v х ·t

Уравнение координаты тела:

х=х 0 +v х ·t

Обозначения:

х - координата движущегося тела

х 0 - начальная координата движущегося тела

v ср -Средняя скорость равномерного прямолинейного движения

v х - Скорость равномерного прямолинейного движения

S - Перемещение тела (расстояние, на которое передвинулось тело)

t - Промежуток времени перемещения (время)

Графическое представление равномерного прямолинейного движения

v

Зависимость ускорения от времени . Так как при равномерном движении ускорение равно нулю, то зависимость a(t) - прямая линия, которая лежит на оси времени.

Так как тело движется прямолинейно и равномерно (v =const), т.е. скорость со временем не изменяется, то график с зависимостью скорости от времени v (t) - прямая линия, параллельная оси времени.

Проекция перемещения тела численно равна площади прямоугольника под графиком, так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

при прямолинейном равномерном движении модуль вектора перемещения равен площади прямоугольника под графиком скорости.

Зависимость перемещения от времени. График s(t) - наклонная линия:



Зависимость координаты от времени. График х(t) - наклонная линия:

Из графика видно, что проекция скорости равна:

v х =S/t=tga

Рассмотрев эту формулу, мы можем сказать, чем больше угол a , тем быстрей движется тело и оно проходит больший путь за меньшее время.

Правило определения скорости по графику s(t) и x(t): Тангенс угла наклона графика к оси времени равен скорости движения.

Неравномерное прямолинейное движение.

Равномерное движение это движение с постоянной скоростью. Если скорость тела меняется, говорят, что оно движется неравномерно.

Движение, при котором тело за равные промежутки времени совершает неодинаковые перемещения, называют неравномерным илипеременным движением .

Для характеристики неравномерного движения вводится понятие средней скорости.

Средняя скорость движения равна отношению всего пути, пройденного материальной точкой к промежутку времени, за который этот путь пройден.

В физике наибольший интерес представляет не средняя, а мгновенная скорость , которая определяется как предел, к которому стремится средняя скорость за бесконечно малый промежуток времени Δt :

Мгновенной скоростью переменного движения называют скорость тела в данный момент времени или в данной точке траектории .

Мгновенная скорость тела в любой точке криволинейной траектории направлена по касательной к траектории в этой точке.

Различие между средней и мгновенной скоростями показано на рисунке.

Движение тела, при котором его скорость за любые равные промежутки времени изменяется одинаково, называют равноускоренным или равнопеременным движением .

Ускорение - это векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло.

Если скорость изменяется одинаково в течение всего времени движения, то ускорение можно рассчитать по формуле:

Обозначения:

v х - конечная скорость тела при равноускоренном движении по прямой

v 0х - начальная скорость тела

a - ускорение тела

t - время движения тела

Ускорение показывает, как быстро изменяетcя скорость тела. Если ускорение положительно, значит скорость тела увеличивается, движение ускоренное. Если ускорение отрицательно, значит скорость уменьшается, движение замедленное.

Единица измерения ускорения в СИ [м/с 2 ].

Ускорение измеряют акселерометром

Уравнение скорости для равноускоренного движения:

Уравнение равноускоренного прямолинейного движения (перемещение при равноускоренном движении):

Обозначения:

Перемещение тела при равноускоренном движении по прямой

Начальная скорость тела

Скорость тела при равноускоренном движении по прямой

Ускорение тела

Время движения тела

Еще формулы, для нахождения перемещения при равноускоренном прямолинейном движении, которые можно использовать при решении задач:

- если известны начальная, конечная скорости движения и ускорение.

- если известны начальная, конечная скорости движения и время всего движения

Графическое представление неравномерного прямолинейного движения

Механическое движение представляют графическим способом. Зависимость физических величин выражают при помощи функций. Обозначают:

v (t) - изменение скорости со временем

S(t) - изменение перемещения (пути) со временем

a(t) - изменение ускорения со временем

Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) - прямая линия, параллельная оси времени.

Зависимость скорости от времени . При равномерном движении скорость изменяется, согласно линейной зависимости .

Графиком является наклонная линия.

Правило определения пути по графику v(t): Путь тела - это площадь треугольника (или трапеции) под графиком скорости.

Правило определения ускорения по графику v(t): Ускорение тела - это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.

Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратичной зависимости

В координатах зависимость имеет вид .

Графиком является ветка параболы.

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

Виды движений:

А) Равномерное прямолинейное движение материальной точки: Начальные условия


. Начальные условия



Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

О писания движения . Существуют различные способы описания движения тел. При координатном способе задания положения тела в декартовой системе координат движение материальной точки определяется тремя функциями, выражающими зависимость координат от времени:

x = x (t ), y =у(t ) и z = z (t ) .

Эта зависимость координат от времени называется законом движения (или уравнением движения).

При векторном способе положение точки в пространстве определяется в любой момент времени радиус-вектором r = r (t ) , проведенным из начала координат до точки.

Существует еще один способ определения положения материальной точки в пространстве при заданной траектории ее движения: с помощью криволинейной координаты l (t ) .

Все три способа описания движения материальной точки эквивалентны, выбор любого из них определяется соображениями простоты получаемых уравнений движения и наглядности описания.

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

Линия, по которой движется некоторая точка тела, называется траекторией движения этой точки.

Длина участка траектории, пройденного точкой при ее движении, называется пройденным путем .

Изменение радиус- вектора с течением времени называют кинематическим законом :
При этом координаты точек будут являться координатами по времени:x = x (t ), y = y (t ) и z = z (t ).

При криволинейном движении путь больше модуля перемещения, так как длина дуги всегда больше длины стягивающей её хорды

Вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени), называется перемещением . Результирующее перемещение равно векторной сумме последовательных перемещений.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории, и модуль перемещения равен пройденному пути.

3. Скорость. Средняя скорость. Проекции скорости.

Скорость - быстрота изменения координаты. При движении тела (материальной точки) нас интересует не только его положение в выбранной системе отсчета, но и закон движения, т. е. зависимость радиус-вектора от времени. Пусть моменту времени соответствует радиус-вектордвижущейся точки, а близкому моменту времени- радиус-вектор. Тогда за малый промежуток времени
точка совершит малое перемещение, равное

Для характеристики движения тела вводится понятие средней скорости его движения:
Эта величина является векторной, совпадающей по направлению с вектором
. При неограниченном уменьшенииΔt средняя скорость стремится к предельному значению, которое называется мгновенной ско­ростью :

Проекции скорости.

А) Равномерное прямолинейное движение материальной точки:
Начальные условия

Б) Равноускоренное прямолинейное движение материальной точки:
. Начальные условия

В) Движение тела по дуге окружности с постоянной по модулю скоростью:

Если положение данного тела относительно окружающих пред-метов с течением времени изменяется, то данное тело движется. Если положение тела остается неизменным, то тело находится в покое. За единицу времени в механике принимается 1 сек. Под промежутком времени подразумевается число t сек, отделяющих два каких-нибудь последовательных явления.

Наблюдая движение какого-нибудь тела, часто можно видеть, что движения различных точек тела различны; так при качении колеса по плоскости центр колеса движется по прямой линии, а точка, лежащая на окружности колеса, описывает кривую (циклоиду) ; пути, пройденные этими двумя точками за одно и то же время (за 1 оборот), также различны. Поэтому изучение движения тела начинают с изучения движения отдельной точки.

Линия, описываемая движущейся точкой в пространстве, называется траекторией этой точки.

Прямолинейным движением точки называется такое движение, траектория которого —прямая линия .

Криволинейное движение — это движение, траектория которого не является прямой линией.

Движение определяется направлением, траекторией и пройденным за определенный промежуток времени (период) путем.

Равномерным движением точки называется такое движение, при котором отношение пройденного пути S к соответствующему промежутку времени сохраняет постоянную величину для любого промежутка времени, т. е.

S/t = const (постоянная величина).(15)

Это постоянное отношение пути ко времени называется скоростью равномерного движения и обозначается буквой v. Таким образом, v= S/t. (16)

Решая уравнение относительно S, получим S = vt , (17)

т. е. величина пути, пройденного точкой при равномерном движении, равна произведению скорости на время. Решая уравнение относительно t, находим, что t = S/v ,(18)

т. е. время, в течение которого точка при равномерном движении проходит данный путь, равно отношению этого пути к скорости движения.

Эти равенства являются основными формулами равномерного движения. По этим формулам определяется одна из трех величин S, t, v, когда две других известны.

Размерность скорости v = длина / время = м/сек.

Неравномерным движением называется такое движение точки, при котором отношение пройденного пути к соответствующему промежутку времени не является постоянной величиной.

При неравномерном движении точки (тела) часто удовлетворяются нахождением средней скорости, которая характеризует быстроту движения за данный промежуток времени, но не дает представления о скорости движения точки в отдельные моменты, т. е. об истинной скорости.

Истинная скорость неравномерного движения — это та скорость, с которой движется точка в данный момент.

Средняя скорость движения точки определяется по формуле (15).

Практически часто удовлетворяются средней скоростью, принимая ее как истинную. Например, скорость стола у продольно-строгального станка постоянная, за исключением моментов начала рабочего и начала холостого ходов, но этими моментами в большинстве случаев пренебрегают.

У поперечно-строгального станка, у которого вращательное движение преобразуется в поступательное кулисным механизмом, скорость ползуна неравномерна. В начале хода она равна нулю, затем возрастает до какой-то наибольшей величины в момент вертикального положения кулисы, после чего начинает уменьшаться и к концу хода становится опять равной нулю. В большинстве случаев при расчетах пользуются средней скоростью v ср ползуна, которую принимают как истинную скорость резания.

Скорость ползуна поперечно-строгального станка с кулисным механизмом можно охарактеризовать как равномерно-переменную.

Равномерно-переменное движение — это движение, при котором за одинаковые промежутки времени скорость увеличивается или уменьшается на одинаковую величину.

Скорость равномерно-переменного движения выражается формулой v = v 0 + at, (19)

где v—скорость равномерно-переменного движения в данный момент, м/сек;

v 0 — скорость в начале движения, м/сек; а — ускорение, м/сек 2 .

Ускорением называется изменение скорости в единицу времени.

Ускорение а имеет размерность скорость / время = м / сек 2 и выражается формулой a = (v-v 0)/t. (20)

При v 0 = 0, a = v/t.

Путь, пройденный при равномерно-переменном движении, выражается формулой S= ((v 0 +v)/2)* t = v 0 t+(at 2)/2. (21)

Поступательным движением твердого тел а называется такое движение, при котором всякая прямая, взятая на этом теле, перемещается параллельно самой себе.

При поступательном движении скорости и ускорения всех точек тела одинаковы и в любой точке являются скоростью и ускорением тела.

Вращательным движением называется такое движение, при котором все точки некоторой прямой линии (оси), взятой в этом теле, остаются неподвижными.

При равномерном вращении в равные промежутки времени тело поворачивается на одинаковые углы. Угловая скорость характеризует величину вращательного движения и обозначается буквой ω (омега).

Связь между угловой скоростью ω и числом оборотов в минуту выражается уравнением: ω =(2πn)/60 = (πn)/30 град/сек. (22)

Вращательное движение является частным случаем криволинейного движения.

Скорость вращательного движения точки направлена по касательной к траектории движения и по величине равна длине дуги, пройденной точкой за соответствующий промежуток времени.

Скорость движения точки вращающегося тела выражается уравнением

v = (2πRn)/(1000*60)= (πDn)/(1000*60) м/сек, (23)

где п — число оборотов в минуту; R — радиус окружности вращения.

Угловое ускорение характеризует увеличение угловой скорости в единицу времени. Обозначается оно буквой ε (эпсилон) и выражается формулой ε =(ω - ω 0) / t. (24)

Чтобы найти координаты движущегося тела в любой момент времени, нужно знать проекции вектора перемещения на оси координат, а значит, и сам вектор перемещения. Что для этого нужно знать. Ответ зависит от того, какое движение совершает тело.

Рассмотрим сначала самый простой вид движения - прямолинейное равномерное движение .

Движение, при котором тело за любые равные промежутки совершает одинаковые перемещения, называют прямолинейным равномерным движением.

Чтобы найти перемещение тела в равномерном прямолинейном движении за какой-то промежуток времени t , надо знать, какое перемещение совершает тело за единицу времени, поскольку за любую другую единицу времени оно совершает такое же перемещение.

Перемещение, совершаемое за единицу времени, называют скоростью движения тела и обозначают буквой υ . Если перемещение на этом участке обозначить через , а промежуток времени через t , то скорость можно выразить отношением к . Поскольку перемещение - векторная величина, а время - скалярная , то скорость тоже векторная величина. Вектор скорости направлен так же, как и вектор перемещения.

Скоростью равномерного прямолинейного движения тела называют величину, равную отношению перемещения тела к промежутку времени, в течение которого это перемещение произошло:

Таким образом, скорость показывает, какое перемещение совершает тело в единицу времени. Следовательно, чтобы найти перемещение тела, надо знать его скорость . Перемещение тела вычисляется по формуле:

Вектор перемещения направлен так же, как и вектор скорости, время t - величина скалярная.

По формулам, написанным в векторной форме, вычисления вести нельзя, поскольку векторная величина имеет не только численное значение, но и направление. При вычислениях пользуются формулами, в которые входят не векторы, а их проекции на оси координат, так как над проекциями можно производить алгебраические действия.

Поскольку векторы равны, то равны и их проекции на ось X , отсюда:

Теперь можно получить формулу для вычисления координаты x точки в любой момент времени. Нам известно, что

Из этой формулы видно, что при прямолинейном равномерном движении координата тела линейно зависит от времени, а это значит, что с ее помощью можно описать прямолинейное равномерное движение.

Кроме того, из формулы следует, что для нахождения положения тела в любой момент времени при прямолинейном равномерном движении нужно знать начальную координату тела x 0 и проекцию вектора скорости на ось, вдоль которой движется тело.

Необходимо помнить, что в этой формуле v x - проекция вектора скорости, следовательно, как всякая проекция вектора, она может быть положительной и отрицательной.

Прямолинейное равномерное движение встречается редко. Чаще приходится иметь дело с движением, при котором за равные промежутки времени перемещения тела могут быть различными. Это значит, что скорость тела с течением времени как-то изменяется. С переменной скоростью движутся автомобили, поезда, самолеты и т. д., брошенное вверх тело, падающие на Землю тела.

При таком движении для вычисления перемещения формулой пользоваться нельзя, поскольку скорость изменяется во времени и речь уже идет не о какой-то определенной скорости, значение которой можно подставить в формулу. В таких случаях пользуются так называемой средней скоростью, которая выражается формулой:

Средняя скорость показывает, чему равно перемещение, которое тело в среднем совершает за единицу времени.

Однако, при помощи понятия средней скорости основную задачу механики - определить положение тела в любой момент времени - решить нельзя.

В основе многих задач в физике лежит рассмотрение прямолинейного равномерного и равноускоренного движения. Они являются самыми простыми и идеализированными случаями перемещения тел в пространстве. Охарактеризуем их подробнее в данной статье.

Прежде чем рассмотреть равномерное и полезно разобраться с самим понятием.

Движение представляет собой процесс изменение координат материальной точки в пространстве за определенный промежуток времени. Согласно данному определению, выделим следующие признаки, по которым можно сразу сказать, идет ли речь о движении или нет:

  • Должно иметь место изменение пространственных координат. В противном случае тело можно считать покоящимся.
  • Процесс должен развиваться во времени.

Также обратим внимание на понятие "материальной точки". Дело в том, что при изучении вопросов механического движения (равномерного и равноускоренного прямолинейного движения в том числе) строение тела и его размеры не учитывают. Связано это приближение с тем, что величина изменения координат в пространстве намного превосходит физические размеры движущегося объекта, поэтому его считают материальной точкой (слово "материальный" предполагает учет его массы, поскольку ее знание необходимо при решении рассматриваемых задач).

Основные физические величины, характеризующие движение

К ним относятся скорость, ускорение, пройденный путь, а также понятие траектории. Разберем каждую величину по порядку.

Скорость прямолинейного равномерного и равноускоренного движения (векторная величина) отражает быстроту изменения координат тела во времени. Например, если оно переместилось за 10 секунд на 100 метров (типичные значения для спринтеров на спортивных соревнованиях), тогда говорят о скорости 10 метров в секунду (100/10 = 10 м/с). Обозначается эта величина латинской буквой "v" и измеряется в единицах расстояния, деленных на время, например, километры в час (км/ч), метры в минуту (м/мин.), мили в час (мил./ч) и так далее.

Ускорение - физическая которая обозначается буквой "a", и характеризуется быстроту изменения самой скорости. Возвращаясь к примеру спринтеров, известно, что в начале забега они совершают старт с небольшой скоростью, по мере движения она увеличивается, достигая максимальных значений. Размерность ускорения получается, если поделить таковую для скорости на время, например, (м/с)/с или м/с 2 .

Пройденный путь (скалярная величина) отражает расстояние, которое прошел (проехал, пролетел, проплыл) движущийся объект. Эта величина однозначно определяется только начальным и конечным положением объекта. Измеряется она в единицах расстояния (метры, километры, миллиметры и другие) и обозначается буквой "s" (иногда "d" или "l").

Траектория в отличие от пути характеризует кривую линию, по которой двигалось тело. Поскольку в данной статье рассматривается только движение равноускоренное и равномерное прямолинейное, то и траектория для него будет прямой линией.

Вопрос относительности движения

Многие люди замечали, что находясь в автобусе, можно видеть, что движущийся по соседней полосе автомобиль, кажется покоящимся. Этот пример наглядно подтверждает, относительность движения (равноускоренного, равномерного прямолинейного движения и других его видов).

Учитывая названную особенность, при рассмотрении задач с движущимися объектами всегда вводят систему отсчета, относительно которой решают поставленную проблему. Так, если за систему отчета взять пассажира в автобусе в примере выше, то относительно него скорость автомобиля будет равна нулю. Если же рассматривать движение относительно стоящего на остановке человека, то относительно него автомобиль движется с некоторой скоростью v.

В случае прямолинейного движения, когда два объекта движутся вдоль одной линии, то скорость одного из них относительно другого определяется по формуле: v ¯ = v ¯ 1 + v ¯ 2 , здесь v ¯ 1 и v ¯ 2 - скорости каждого объекта (черта означает, что складываются векторные величины).

Самый простой вид движения

Конечно же, таковым является движение объекта по прямой с постоянной скоростью (равномерное прямолинейное). Примером этого типа движения является полет самолета через облака или ходьба пешехода. В обоих случаях траектория объекта остается прямой, и каждый из них перемещается с конкретной скоростью.

Формулы, описывающие этот тип перемещения объектов, имеют следующий вид:

  • s = v*t;
  • v = s/t.

Здесь t - промежуток времени, в течение которого рассматривается движение.

Равноускоренное прямолинейное перемещение

Под ним понимают такой тип прямолинейного перемещения объекта, при котором его скорость изменяется по формуле v = a*t, где a - постоянное ускорение. Изменение скорости возникает за счет действия внешних сил, имеющих различную природу. Например, тот же самолет, прежде чем достигнет крейсерской скорости, должен ее набрать из состояния покоя. Другой пример: торможение автомобиля, когда скорость изменяется от некоторой величины до нуля. Этот тип движения называется равнозамедленным, поскольку ускорение имеет в нем отрицательный знак (направлено против вектора скорости).

Пройденный путь s при данном типе перемещения можно рассчитать, если проинтегрировать величину скорости по времени, в результате получится формула: s = a*t 2 /2, где t - время ускорения (торможения).

Смешанный тип движения

В ряде случаев прямолинейное перемещение объектов в пространстве происходит, как с постоянной скоростью, так и с ускорением, поэтому полезно привести формулы для этого смешанного типа движения.

Скорость и ускорение равномерного и равноускоренного прямолинейного движения связаны друг с другом следующим выражением: v = v 0 + a*t, где v 0 - значение начальной скорости. Понять эту формулу просто: сначала объект двигался с постоянной скорость v 0 , например, автомобиль по дороге, но затем он начал ускоряться, то есть за каждый промежуток времени t он начал увеличивать быстроту своего перемещения на a*t. Поскольку скорость аддитивная величина, то сумма ее начального значения с величиной изменения приведет к отмеченному выражению.

Интегрируя эту формулу по времени, получаем другое уравнение прямолинейного равномерного и равноускоренного движения, которое позволяет рассчитать пройденный путь: s = v 0 *t + a*t 2 /2. Как видно, это выражение равно сумме аналогичных формул для более простых видов движения, рассмотренных в предыдущих пунктах.

Пример решения задачи

Решим несложную задачу, которая продемонстрирует использование приведенных формул. Условие задачи следующее: автомобиль, двигаясь со скоростью 60 км/ч, начал осуществлять торможение и через 10 секунд полностью остановился. Какой путь он прошел во время торможения?

В данном случае мы имеем дело с прямолинейным равнозамедленным движением. Начальная скорость v 0 = 60 км/ч, конечное же значение этой величины v = 0 (автомобиль остановился). Для определения ускорения торможения воспользуемся формулой: v = v 0 - a*t (знак "-" говорит, что тело замедляет движение). Переведем км/ч в м/с (60 км/ч = 16,667 м/с), и учитывая, что время торможение t = 10 c, получаем: a = (v 0 - v)/t = 16,667/10 = 1,667 м/с 2 . Мы определили ускорение торможения автомобиля.

Для вычисления пройденного пути воспользуемся также уравнением для смешанного типа движения с учетом знака ускорения: s = v 0 *t - a*t 2 /2. Подставляя известные величины, получаем: s = 16,667*10 - 1,667*10 2 /2 = 83,33 метра.

Отметим, что пройденный путь можно было найти, используя формулу для равноускоренного движения (s = a*t 2 /2), поскольку при торможении автомобиль пройдет точно такое же расстояние, как и во время ускорения из состояния покоя до достижения скорости v 0 .

Движение по кривой

Важно отметить, что рассмотренные выражения для пройденного пути применимы не только для случая прямолинейного движения, но и для любого перемещения объекта по криволинейной траектории.

Например, для расчета расстояния, которое пролетит наша планета вокруг Солнца (движение по окружности) за определенный промежуток времени, можно с успехом применить выражение s = v*t. Сделать это можно потому, что в нем используется модуль скорости, который является постоянной величиной, вектор же скорости изменяется. Применяя формулу для пути по криволинейной траектории, следует иметь в виду, что полученное значение будет отражать длину этой траектории, а не разницу между конечной и начальной координатами объекта.