Законодательство        03.07.2023   

Схемы фильтров на операционном усилителе. Активные фильтры на оу

Фильтры предназначены для избирательного выделения полезного сигнала из смеси шумов, помех и самого сигнала. Фильтры характеризуются полосой пропускания, резонансной частотой, эффективностью выделения/ослабле- ния полезного/мешающего сигнала.

Фильтры являются одними из самых распространенных и значимых узлов радиоэлектронной аппаратуры. Они позволяют:

♦ выделить необходимую пользователю информацию из зашумленного сигнала;

♦ улучшить соотношение сигнал/шум;

♦ повысить качество сигнала.

По назначению известны фильтры:

♦ высоких (верхних) частот;

♦ низких (нижних) частот;

♦ полосовые;

♦ узкополосные;

♦ широкополосные;

♦ режекторные (заграждающие) и пр.

ОУ .

На рис. 38.1 приведена типовая низких частот и ему соответствующая АЧХ.

Рассмотрим основные типы фильтров, выполненных с применением

Как известно, коэффициент передачи ОУ, включенного по схеме, рис. 38.2, определяется как 1+R3/R4. Для реализации типового фильтра нижних частот необходимо выполнение условий:

Рис. 38.2. Пример практической реализации низких частот

С1=С2=С, R1=R2,Тогда

частоту среза фильтра можно определить из приближенного соотношения: ДГц]=10/С[мкФ], рис. 38.3. Аналогичный вывод можно получить для расчета фильтра высоких частот.

Соединив последовательно фильтр нижних и верхних частот, можно получить , которого представлена на рис. 38.9.

Рис. 38.7. Пример практической реализации высоких частот

Примечание.

Отклонение номиналов прецизионных элементов фильтров от рекомендованных (расчетных) значений не должно превышать 7 %. Отметим, что для построения фильтра можно использовать ‘прецизионные элементы ( , резисторы) равного номинала, включенные для получения значений R/2 и 2С параллельно.

♦ выходного усилителя (DA 1.2);

Частоты среза, от…до

Напряжение питания

Таблица 38.1 (продолжение)

Частоты среза, от…до

Напряжение питания

Полосовые линейные фильтры 2-го(*4-го;**8-го) порядка

с программ ированием: корпус DIP, WideSO; 2(**4) элемента в корпусе Таблица 38.2

Частоты среза, от…до

Напряжение питания

Фильтры НЧ 5-го порядка на переключаемых конденсаторах:

корпус DIP, SO; 1 элемент в корпусе Таблица 38.3

Частоты среза, от…до

Напряжение питания

Частоты среза, от…до

Напряжение

Примечание.

Порог срабатывания компаратора DA1 устанавливают потенциометром R4. Максимальная чувствительность включения компаратора составляет 10 мВ. Светодиод HL1 индицирует наличие надпорогового сигнала. Потенциометром R7 устанавливают верхний предел реакции микросхемы управления LED-шкалой DA2 на величину управляющего напряжения - от 1 до 6 В; потенциометром R10 - нижний предел - от О до 5 В; VD4 защищает управляющие входы микросхемы DA2 от перенапряжений, одновременно стабилизируя управляющие напряжения.

VD5, VD6 автоматически обеспечивает минимальную разность между верхним и нижним уровнями управляющих напряжений на выводах 3 и 16 микросхемы DA2 в 1 В. Диод VD3 защищает цепь управления LED-шкалой от перенапряжения. Резисторы R11-R22 предназначены для согласования уровня сигналов, снимаемых с выходов микросхемы DA2, с уровнями КМОП-логики.

Если на вход устройства поступает надпороговый аналоговый (или цифровой) сигнал, то с увеличением его частоты произойдет плавное поочередное или одновременно-групповое переключение каналов индикации ( HL2-HL13). Одновременно управляющие сигналы с выходов микросхемы DA2 через КМОП-инверторы DD1, DD2 поступят на управляющие входы аналоговых КМОП-ключей (микросхемы DA3- DA5).

Полоса пропускания каждого из каналов при установке на управляющих входах 3 и 16 микросхемы DA2 максимального и минимального уровней 6 и О Б, соответственно, составят для первых шести каналов 400 Гц у для остальных - 760 Гц. Таким образом, первый канал пропустит сигналы частотой ниже 400 Гц, второй - в полосе 400-800 Гц,… последний, 12-й канал пропускает частоты свыше 6 кГц.

Примечание.

Регулировкой потенциометров R7 и R10 можно плавно изменять ширину и границы частотных каналов.

HL2-HL13 динамически индицируют номер задействованного канала управления.

Устройство потребляет 60л*А при напряжении питания 15 Б и одном све гящемся светодиоде.

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. - СПб.: Наука и Техника, 2013. -352 с.

Активные RC фильтры применяются на частотах ниже 100 кГц. Применение положительной обратной связи позволяет увеличивать добротность полюса фильтра. При этом полюс фильтра можно реализовать на RC элементах, которые значительно дешевле и в данном диапазоне частот меньше по габаритам индуктивностей. Кроме того, величина емкости конденсатора, входящего в состав активного фильтра может быть уменьшена, так как в ряде случаев усилительный элемент позволяет увеличивать ее значение. Применение конденсаторов с малой емкостью позволяет выбирать их типы, обладающие малыми потерями и высокой стабильностью параметров.

При проектировании активных фильтров фильтр заданного порядка разбивается на звенья первого и второго порядка. Результирующая АЧХ получится перемножением характеристик всех звеньев. Применение активных элементов (транзисторов, операционных усилителей) позволяет исключить влияние звеньев друг на друга и проектировать их независимо. Это обстоятельство значительно упрощает и удешевляет проектирование и настройку активных фильтров.

Активные фильтры НЧ первого порядка

На рисунке 2 приведена схема активного RC фильтра нижних частот первого порядка на операционном усилителе. Данная схема позволяет реализовать полюс коэффициента передачи на нулевой частоте, величинами сопротивления резистора R1 и емкости конденсатора C1 можно задать его частоту среза. Именно значения емкости и сопротивления определят полосу пропускания данной схемы активного фильтра.


Рисунок 2. Схема активного RC фильтра нижних частот первого порядка

В схеме, приведенной на рисунке 2, коэффициент усиления определяется отношением резисторов R2 и R1:

(1),

а величина емкости конденсатора C1 увеличивается в коэффициент усиления плюс единица раз за счет эффекта Миллера.

(2),

Следует отметить, что подобный способ увеличения значения емкости приводит к уменьшению динамического диапазона схемы в целом. Поэтому к данному способу увеличения емкости конденсатора прибегают в крайних случаях. Обычно обходятся интегрирующей RC-цепочкой, в которой уменьшение частоты среза достигается увеличением сопротивления резистора при постоянном значении емкости конденсатора. Для того, чтобы устранить влияние цепей нагрузки, на выходе RC-цепочки обычно ставится буферный усилитель с единичным коэффициентом усиления по напряжению.


Рисунок 3. Схема RC фильтра нижних частот первого порядка (RC-цепочка)

Тем не менее, при достаточно низкой частоте среза фильтра низких частот может потребоваться большое значение емкости конденсатора. Электролитические конденсаторы, обладающие значительной емкостью, не подходят для создания фильтров из-за большого разброса параметров и низкой стабильности. Конденсаторы, выполненные на основе керамики с большим значением электрической постоянной ε , тоже не отличаются стабильностью значения емкости. Поэтому применяются высокостабильные конденсаторы малой емкости, и их значение увеличивается в схеме активного фильтра, приведенной на рисунке 2.

Активные фильтры НЧ второго порядка

Еще больше распространены схемы активных фильтров второго порядка, позволяющие реализовать большую крутизну спада АЧХ по сравнению со схемой первого порядка. Кроме того, эти звенья позволяют настраивать частоту полюса на заданное значение, полученное при аппроксимации амплитудно-частотной характеристики. Наибольшее распространение получила схема Саллена-Ки, приведенная на рисунке 4.


Рисунок 4. Схема активного RC фильтра нижних частот второго порядка

Амплитудно-частотная характеристика этой схемы подобна АЧХ звена второго порядка пассивного LC фильтра. Ее вид приведен на рисунке 5.



Рисунок 5. Примерный вид амплитудно-частотной характеристики звена второго порядка активного RC фильтра нижних частот

Частота резонанса полюса при этом может быть определена из формулы:

(3),

а его добротность:

(4),

Частоты нулей в идеальном случае равны бесконечности. В реальной схеме зависят от конструкции печатной платы и параметров использованных резисторов и конденсаторов.

Схема Саллена-Ки позволяет максимально упростить выбор элементов схемы. Обычно конденсаторы C1 и C2 выбирают одинаковой емкости. Резисторы R1 и R2 выбирают одинакового сопротивления. Сначала задаются значением емкостей C1 и C2. Как уже обсуждалось выше, их емкости стараются выбрать минимальными. Именно такие конденсаторы обладают максимально стабильными характеристиками. Затем определяют значение R1 и R2:

(5),

Резисторы R3 и R4 в схеме Саллена-Ки определяют коэффициент усиления по напряжению точно так же как и в обычной схеме инвертирующего усилителя. В схеме активного фильтра именно эти элементы будут определять добротность полюса.

(6),

В схеме активного RC фильтра усилитель охвачен как отрицательной, так и положительной обратной связью. Глубина положительной обратной связи определяется соотношением резисторов R1R2 или конденсаторов C1C2. Если добротность полюса задавать за счет этого соотношения (отказаться от равенства сопротивлений или конденсаторов), то операционный усилитель можно охватить 100% отрицательной обратной связью и обеспечить единичный коэффициент усиления активного элемента. Это позволит упростить схему звена второго порядка. Упрощенная схема активного RC фильтра второго порядка показана на рисунке 6.


Рисунок 6. Упрощенная схема Саллена-Ки

К сожалению при единичном коэффициенте усиления можно задаваться только одинаковыми значениями сопротивлений R1 и R2, а необходимую добротность получать соотношением емкостей. Поэтому расчет начинается с задания номинального значения резисторов R1 = R2 = R. Тогда емкости можно рассчитать следующим образом:

(7),
(8),

Уже много лет все привыкли в качестве активного элемента использовать операционный усилитель. Однако в ряде случаев может оказаться, что схема на транзисторе будет или занимать меньшую площадь, или окажется более широкополосной. На рисунке 7 приведена схема активного ФНЧ, выполненного на биполярном транзисторе.


Рисунок 7. Схема активного RC фильтра нижних частот на транзисторе

Расчет данной схемы (элементов R1, R2, C1, C2) не отличается от расчета, приведенной на рисунке 6. Расчет резисторов R3, R4, R5 не отличается от расчета обычного каскада эмиттерной стабилизации.

Историческая справка

Первыми частотными фильтрами были пассивные LC фильтры. Затем уже в 30-х годах XX века было замечено, что обратная связь в усилительных каскадах способна увеличивать добротность LC контуров радиоусилителей. Одна из наиболее распространенных схем увеличения добротности параллельного LC контура приведена на рисунке 1.


Рисунок 1. Схема увеличения добротности параллельного колебательного контура

Эта особенность в LC схемах большого распространения не получила, так как LC схемы позволяют конструктивными методами обеспечить добротноть, необходимую для реализации большинства схем фильтров, работающих на высоких частотах. В то же самое время схемы с положительной обратной связью, использующиеся для увеличения добротности контуров, обладают способностью к самовозбуждению и обычно ограничивают динамический диапазон выходного сигнала из-за влияния шумов усилительного каскада.

Совершенно другая ситуация сложилась в области низких частот. Это в основном частоты звукового диапазона (от 20 Гц до 20 кГц). В этом диапазоне частот габариты индуктивностей и конденсаторов становятся недопустимо большими. Кроме того, потери этих радиотехнических элементов тоже возрастают, что в большинстве случаев не позволяет получить добротность полюсов фильтра, необходимую для реализации заданной . Все это привело к необходимости применения усилительных каскадов.

Дата последнего обновления файла 18.06.2018

Литература:

  1. Титце У. Шенк К. Полупроводниковая схемотехника: Справочное руководство. Пер. с нем. — 12-е издание. М.: Додэка XXI, 2015. - 1784

Активные фильтры реализуются на основе усилителей (обычно ОУ) и пассивных RC- фильтров. Среди преимуществ активных фильтров по сравнению с пассивными следует выделить:

· отсутствие катушек индуктивности;

· лучшая избирательность;

· компенсация затухания полезных сигналов или даже их усиление;

· пригодность к реализации в виде ИМС.

Активные фильтры имеют и недостатки:

¨ потребление энергии от источника питания;

¨ ограниченный динамический диапазон;

¨ дополнительные нелинейные искажения сигнала.

Отметим так же, что использование активных фильтров с ОУ на частотах свыше десятков мегагерц затруднено из-за малой частоты единичного усиления большинства ОУ широкого применения. Особенно преимущество активных фильтров на ОУ проявляется на самых низких частотах, вплоть до долей герц.

В общем случае можно считать, что ОУ в активном фильтре корректирует АЧХ пассивного фильтра за счет обеспечения разных условий для прохождения различных частот спектра сигнала, компенсирует потери на заданных частотах, что приводит к получению крутых спадов выходного напряжения на склонах АЧХ. Для этих целей используются разнообразные частотно-избирательные ОС в ОУ. В активных фильтрах обеспечивается получение АЧХ всех разновидностей фильтров: нижних частот (ФНЧ), верхних частот (ФВЧ) и полосовых (ПФ).

Первым этапом синтеза всякого фильтра является задание передаточной функции (в операторной или комплексной форме), которая отвечает условиям практической реализуемости и одновременно обеспечивает получение необходимой АЧХ или ФЧХ (но не обеих) фильтра. Этот этап называют аппроксимацией характеристик фильтра.

Операторная функция представляет собой отношение полиномов:

K(p )=A(p )/B(p ),

и однозначно определяется нулями и полюсами. Простейший полином числителя - константа. Число полюсов функции (а в активных фильтрах на ОУ число полюсов обычно равно числу конденсаторов в цепях, формирующих АЧХ) определяет порядок фильтра. Порядок фильтра указывает на скорость спада его АЧХ, которая для первого порядка составляет 20дБ/дек, для второго - 40дБ/дек, для третьего - 60дБ/дек и д.д.

Задачу аппроксимации решают для ФНЧ, затем с помощью метода инверсии частоты полученную зависимость используют для других типов фильтров. В большинстве случаев задают АЧХ, принимая нормированный коэффициент передачи:

,

где f(х) - функция фильтрации; - нормированная частота; - частота среза фильтра; e - допустимое отклонение в полосе пропускания.

В зависимости от того, какая функция принимается в качестве f(х) различают фильтры (начиная со второго порядка) Баттерворта, Чебышева, Бесселя и др. На рисунке 7.15 приведены их сравнительные характеристики.

Фильтр Баттерворта (функция Батерворта) описывает АЧХ с максимально плоской частью в полосе пропускания и относительно небольшой скоростью спада. АЧХ такого ФНЧ может быть представлена в следующем виде:

где n - порядок фильтра.

Фильтр Чебышева (функция Чебышева) описывает АЧХ с определенной неравномерностью в полосе пропускания, но не большей скоростью спада.

Фильтр Бесселя характеризуется линейной ФЧХ, в результате чего сигналы, частоты которых лежат в полосе пропускания, проходят через фильтр без искажений. В частности, фильтры Бесселя не дают выбросов при обработке колебаний прямоугольной формы.

Помимо перечисленных аппроксимаций АЧХ активных фильтров известны и другие, например, обратного фильтра Чебышева, фильтра Золотарева и т.д. Заметим, что схемы активных фильтров не изменяются в зависимости от типа аппроксимации АЧХ, а изменяются соотношения между номиналами их элементов.

Простейшие (первого порядка) ФВЧ, ФНЧ, ПФ и их ЛАЧХ приведены на рисунке 7.16.

В этих фильтрах конденсатор, определяющий частотную характеристику, включен в цепь ООС.

Для ФВЧ (рисунок 7.16а) коэффициент передачи равен:

,

Частоту сопряжения асимптот находят из условия , откуда

.

Для ФНЧ (рисунок 7.16б) имеем:

,

.

В ПФ (рисунок 7.16в) присутствуют элементы ФВЧ и ФНЧ.

Можно увеличить крутизну спада ЛАЧХ, если увеличить порядок фильтров. Активные ФНЧ, ФВЧ и ПФ второго порядка приведены на рисунке 7.17.

Наклон асимптот у них может достигать 40дБ/дек, а переход от ФНЧ к ФВЧ, как видно из рисунков 7.17а,б, осуществляется заменой резисторов на конденсаторы, и наоборот. В ПФ (рисунок 7.17в) имеются элементы ФВЧ и ФНЧ. Передаточные функции равны :

¨ для ФНЧ:

;

¨ для ФВЧ:

.

Для ПФ резонансная частота равна:

.

Для ФНЧ и ФВЧ частоты среза соответственно равны:

;

.

Довольно часто ПФ второго порядка реализуют с помощью мостовых цепей. Наиболее распространены двойные Т-образные мосты, которые "не пропускают" сигнал на частоте резонанса (рисунок 7.18а) и мосты Вина, имеющие максимальный коэффициент передачи на резонансной частоте (рисунок 7.18б).

Мостовые схемы включены в цепи ПОС и ООС. В случае двойного Т-образного моста глубина ООС минимальна на частоте резонанса, и усиление на этой частоте максимально. При использовании моста Вина, усиление на частоте резонанса максимально, т.к. максимальна глубина ПОС. При этом для сохранения устойчивости глубина ООС, введенной с помощью резисторов и , должна быть больше глубины ПОС. Если глубины ПОС и ООС близки, то такой фильтр может иметь эквивалентную добротность Q»2000.

Резонансная частота двойного Т-образного моста при и , и моста Вина при и , равна , и ее выбирают исходя из условия устойчивости , т.к. коэффициент передачи моста Вина на частоте равен 1/3.

Для получения режекторного фильтра двойной Т-образный мост можно включить так, как показано на рисунке 7.18в, или мост Вина включить в цепь ООС.

Для построения активного перестраемого фильтра обычно используют мост Вина, у которого резисторы и выполняют в виде сдвоенного переменного резистора.

Возможно построение активного универсального фильтра (ФНЧ, ФВЧ и ПФ), вариант схемы которого приведен на рисунке 7.19.

В его состав входят сумматор на ОУ и два ФНЧ первого порядка на ОУ и , которые включены последовательно. Если , то частота сопряжения . ЛАЧХ имеет наклон асимптот порядка 40дБ/дек. Универсальный активный фильтр имеет хорошую стабильность параметров и высокую добротность (до 100). В серийных ИМС довольно часто используется подобный принцип построения фильтров.

Гираторы

Гиратором называется электронное устройство, преобразующее полное сопротивление реактивных элементов. Обычно это преобразователь емкости в индуктивность, т.е. эквивалент индуктивности. Иногда гираторы называют синтезаторами индуктивностей. Широкое распространение гираторов в ИМС объясняется большими трудностями изготовления катушек индуктивностей с помощью твердотельной технологии. Использование гираторов позволяет получить относительно большую индуктивность с хорошими массогабаритными показателями.

На рисунке 7.20 приведена электрическая схема одного из вариантов гиратора, представляющего собой повторитель на ОУ, охваченный частотно-избирательной ПОС ( и ).

Поскольку с увеличением частоты сигнала емкостное сопротивление конденсатора уменьшается, то напряжение в точке а будет возрастать. Вместе с ним будет возрастать напряжение на выходе ОУ. Увеличенное напряжение с выхода по цепи ПОС поступает на неинвертирующий вход, что приводит к дальнейшему росту напряжения в точке а , причем тем интенсивнее, чем выше частота. Таким образом, напряжение в точке а ведет себя подобно напряжению на катушке индуктивности. Синтезированная индуктивность определяется по формуле :

.

Добротность гиратора определяется как :

.

Одной из основных проблем при создании гираторов является трудность в получении эквивалента индуктивности, у которой оба вывода не соединены с общей шиной. Такой гиратор выполняется, как минимум, на четырех ОУ. Другой проблемой является относительно узкий диапазон рабочих частот гиратора (до нескольких килогерц на ОУ широкого применения).

  • Tutorial

Краткое введение

Продолжаю спамить писать на тему операционных усилителей. В этой статье постараюсь дать обзор одной из важнейших тем, связанной с ОУ. Итак, добро пожаловать, активные фильтры .
Обзор темы
Возможно, Вы уже сталкивались с моделями RC-, LC- и RLC-фильтров. Они вполне подходят для большинства задач. Но для некоторых целей очень важно иметь фильтры с более плоскими характеристиками в полосе пропускания и более крутыми склонами. Вот тут нам и нужны активные фильтры.
Для освежения в памяти, напомню, какие бывают фильтры:
Фильтр Нижних Частот (ФНЧ) - пропускает сигнал, который ниже определенной частоты (ее еще именуют частотой среза). Википедия
Фильтр Высоких Частот (ФВЧ) - пропускает сигнал выше частоты среза. Википедия
Полосовой Фильтр - пропускает только определенный диапазон частот. Википедия
Режекторный Фильтр - задерживает только определенный диапазон частот. Википедия
Ну еще немного лирики. Посмотрите на амплитудно-частотную характеристику (АЧХ) ФВЧ. На этом графике ничего интересного пока не ищите, а просто обратите внимание на участки и их названия:

Самые банальные примеры активных фильтров можно подсмотреть в разделе «Интеграторы и дифференциаторы». Но в данной статье эти схемы трогать не будем, т.к. они не очень эффективны.

Выбираем фильтр
Предположим, что Вы уже определились с частотой, которую хотите фильтровать. Теперь нужно определиться с типом фильтра. Точнее нужно выбрать его характеристику. Иными словами, как фильтр будет себя «вести».
Основными характеристиками являются:
Фильтр Баттерворда - обладает самой плоской характеристикой в полосе пропускания, но имеет плавный спад.
Фильтр Чебышева - обладает самым крутым спадом, но у него самые неравномерные характеристики в полосе пропускания.
Фильтр Бесселя - имеет хорошую фазочастотную характеристику и вполне «приличный» спад. Считается лучшим выбором, если нет специфического задания.
Еще немного информации
Предположим, и с этим заданием вы справились. И теперь можно смело приступить к расчетам.
Есть несколько методов расчета. Не будем усложнять и воспользуемся самым простым. А самый простой - это «табличный» метод. Таблицы можно найти в соответствующей литературе. Чтобы Вы долго не искали, приведу из Хоровица и Хилла «Искусство Схемотехники».
Для ФНЧ:

Скажем так, это все Вы могли бы найти и прочитать и в литературе. Перейдем конкретно к проектированию фильтров.

Расчет
В данном разделе попытаюсь кратко «пробежаться» по всем типам фильтров.
Итак, задание # 1 . Построить фильтр низких частот второго порядка с частотой среза 150 Гц по характеристике Баттерворда.
Приступим. Если мы имеем фильтр n-ного четного порядка, это означает, что в нем будет n/2 операционников. В данном задании - один.
Схема ФНЧ:


Для данного типа расчета берется во внимание, что R1 = R2 , C1 = C2 .
Смотрим в табличку. Видим, что К = 1.586 . Это нам пригодится чуть позже.
Для фильтра низких частот справедливо:
, где, разумеется,
- это частота среза.
Сделав подсчет, получаем . Теперь займемся подбором элементов. С ОУ определились - «идеальный» в количестве 1 шт. Из предыдущего равенства можно предположить, что нам не принципиально, какой элемент выбирать «первым». Начнем с резистора. Лучше всего, чтоб его значение сопротивления были в пределах от 2кОм до 500кОм. На глаз, пусть он будет 11 кОм. Соответственно, емкость конденсатора станет равной 0.1 мкФ. Для резисторов обратной связи значение R берем произвольно. Я обычно беру 10 кОм. Тогда, для верхнего значение К возьмем из таблицы. Следовательно, нижний будет иметь значение сопротивления R = 10 кОм, а верхний 5.8 кОм.
Соберем и промоделируем АЧХ.

Задание # 2 . Построить фильтр высоких частот четвертого порядка с частотой среза 800 Гц по характеристике Бесселя.
Решаем. Раз фильтр четвертого порядка, то в схеме будет два операционника. Тут все совсем не сложно. Мы просто каскадно включаем 2 схемы ФВЧ.
Сам фильтр выглядит так:


Фильтр же четвертого порядка выглядит:


Теперь расчет. Как видим, для фильтра четвертого порядка у нас аж 2 значения К . Логично, что первое предназначается для первого каскада, второе - для второго. Значения К равны 1.432 и 1.606 соответсвенно. Таблица была для фильтров низких частот (!). Для расчета ФВЧ надо кое-что изменить. Коэффициенты К остаются такими же в любом случае. Для характеристик Бесселя и Чебышева изменяется параметр
- нормирующая частота. Она будет равна теперь:

Для фильтров Чебышева и Бесселя как для нижних частот, так и для высоких справедлива одна и та же формула:

Учтите, что для каждого отдельного каскада придется считать отдельно.
Для первого каскада:

Пусть С = 0.01 мкФ, тогда R = 28.5 кОм. Резисторы обратной связи: нижний, как обычно, 10 кОм; верхний - 840 Ом.
Для второго каскада:

Емкость конденсатора оставим неизменной. Раз С = 0.01 мкФ, то R = 32 кОм.
Строим АЧХ.

Для создания полосового или режекторного типа фильтров можно каскадно соединить ФНЧ и ФВЧ. Но такими типами, зачастую, не пользуются из-за плохих характеристик.
Для полосовых и режекторных фильтров также можно использовать «табличный метод», но тут немного другие характеристики.
Приведу сразу табличку и немного ее объясню. Чтоб сильно не растягивать - значения взяты сразу для полосового фильтра четвертого порядка.

a1 и b1 - расчетные коэффициенты. Q - добротность. Это новый параметр. Чем значение добротности больше - тем более «резким» будет спад. Δf - диапазон пропускаемых частот, причем выборка идет на уровне -3 дБ. Коэффициент α - еще один расчетный коэффициент. Его можно найти используя формулы, которые довольно легко найти в интернете.
Ну ладно, хватит. Теперь рабочее задание.
Задание # 3 . Построить полосовой фильтр четвертого порядка по характеристике Баттерворда с центральной частотой 10 кГц, шириной пропускаемых частот 1 кГц и коэффициентом усиления в точке центральной частоты равным 1.
Поехали. Фильтр четвертого порядка. Значит два ОУ. Типовую схему приведу сразу с расчтными элементами.


Для первого фильтра центральная частота определяется как:

Для второго фильтра:

Конкретно в нашем случае, опять же из таблицы, определяем, что добротность Q = 10. Рассчитываем добротность для фильтра. Причем, стоит отметить, что добротность обоих будет равна.

Поправка усиления для области центральной частоты:

Финальная стадия - расчет компонентов.
Пусть конденсатор будет равен 10 нФ. Тогда, для первого фильтра:



В том же порядке, что и (1) находим R22 = R5 = 43.5 кОм, R12 = R4 = 15.4 кОм, R32 = R6 = 54.2 Ом. Только учтите, что для второго фильтра используем
Ну и на последок, АЧХ.

Следующая остановка - полосно-заграждающие фильтры или режекторные.
Тут есть несколько вариаций. Наверное, самый простой - это фильтр Вина-Робинсона (англ. Active Wien-Robinson Filter). Типовая схема - тоже фильтр 4го порядка.


Наше последнее задание.
Задание # 4 . Построить режекторный фильтр с центральной частотой 90 Гц, добротностью Q = 2 и коэффициентом усиления в полосе пропускания равным 1.
Прежде всего, произвольно выбираем емкость конденсатора. Допустим, С = 100 нФ.
Определим значение R6 = R7 = R :

Логично, что «играясь» с этими резисторами, мы можем изменять диапазон частот нашего фильтра.
Далее, нам надо определить промежуточные коэффициенты. Находим их через добротность.


Выберем произвольно резистор R2 . В данном конкретном случае, лучше всего, чтобы он равнялся 30 кОм.
Теперь можем найти резисторы, которые будут регулировать коэффициент усиления в полосе пропускания.


И на последок, необходимо произвольно выбрать R5 = 2R1 . У меня в схеме эти резисторы имеют значение 40 кОм и 20 кОм соответственно.
Собственно, АЧХ:

Практически конец
Кому интересно узнать немного больше, могу посоветовать почитать Хоровица и Хилла «Искусство схемотехники».
Также, D. Johnson «A handbook of active filters».

При работе с электрическими сигналами часто требуется выделить из них какую-либо одну частоту или полосу частот (например, разделить шумовой и полезный сигналы). Для подобного разделения используются электрические фильтры. Активные фильтры, в отличие от пассивных, включают в себя ОУ (или другие активные элементы, например, транзисторы, электронные лампы) и обладают рядом преимуществ. Они обеспечивают более качественное разделение полос пропускания и затухания, в них сравнительно просто можно регулировать неравномерности частотной характеристики в области пропускания и затухания. Также в схемах активных фильтров обычно не используются катушки индуктивности. В схемах активных фильтров частотные характеристики определяются частотнозависимыми обратными связями.

Фильтр нижних частот

Схема фильтра нижних частот приведена на Рис. 12.

Рис. 12. Активный фильтр нижних частот.

Коэффициент передачи такого фильтра можно записать как

, (5)

и
. (6)

При К 0 >>1

Коэффициент передачи
в (5) оказывается таким же, как и у пассивного фильтра второго порядка, содержащего все три элемента (R , L , C ) (Рис. 13), для которого:

Рис. 14. АЧХ и ФЧХ активного фильтра низких частот для разных Q .

Если R 1 = R 3 = R и C 2 = C 4 = С (на Рис. 12), то коэффициент передачи можно записать как

Амплитудно- и фазочастотные характеристики активного фильтра низких частот для разных значений добротности Q показаны на Рис. 14 (параметры электрической схемы подобраны так, чтобы ω 0 = 200 рад/с). Из рисунка видно, что с ростом Q

Активный фильтр низких частот первого порядка реализуется схемой Рис. 15.

Рис. 15. Активный фильтр низких частот первого порядка.

Коэффициент передачи фильтра равен

.

Пассивный аналог этого фильтра представлен на Рис. 16.

Сравнивая эти коэффициенты передачи, видим, что при одинаковых постоянных времени τ’ 2 и τ модуль коэффициента передачи активного фильтра первого порядка будет в К 0 раз больше, чем у пассивного.

Рис. 17. Simulink -модель активного фильтра низких частот.

Исследовать АЧХ и ФЧХ рассматриваемого активного фильтра можно, например, в Simulink , используя блок передаточной функции. Для параметров электрической схемы К р = 1, ω 0 = 200 рад/с и Q = 10 Simulink -модель с блоком передаточной функции будет выглядеть, как показано на Рис. 17. АЧХ и ФЧХ можно получить с помощью LTI - viewer . Но в данном случае проще использовать команду MATLAB freqs . Ниже приведен листинг для получения графиковАЧХ и ФЧХ.

w0=2e2; %собственная частота

Q=10; %добротность

w=0:1:400; %диапазон частот

b=; %вектор числителя передаточной функции:

a=; %вектор знаменателя передаточной функции:

freqs(b,a,w); %расчет и построение АЧХ и ФЧХ

Амплитудно-частотные характеристики активного фильтра низких частот (для τ = 1с и К 0 = 1000) показаны на Рис.18. Из рисунка видно, что с ростом Q проявляется резонансный характер амплитудно-частотной характеристики.

Построим модель фильтра нижних частот в SimPowerSystems , используя созданный нами блок ОУ (operational amplifier ), как показано на Рис 19. Блок операционного усилителя является нелинейным, поэтому в настройках Simulation / Configuration Parameters Simulink для увеличения скорости расчета нужно использовать методы ode23tb или ode15s . Также необходимо разумно выбрать шаг по времени.

Рис. 18. АЧХ и ФЧХ активного фильтра низких частот (для τ = 1с).

Пусть R 1 = R 3 = R 6 = 100 Ом, R 5 = 190 Ом, C 2 = C 4 = 5*10 -5 Ф. Для случая, когда частота источника совпадает с собственной частотой системы ω 0 , сигнал на выходе фильтра достигает максимальной амплитуды (приведен на Рис. 20). Сигнал представляет собой установившиеся вынужденные колебания с частотой источника. На графике хорошо виден переходный процесс, вызванный включением схемы в момент времени t = 0. Также на графике видны отклонения сигнала от синусоидальной формы вблизи экстремумов. На Рис. 21. приведена увеличенная часть предыдущего графика. Эти отклонения можно объяснить насыщением ОУ (максимально допустимые значения напряжения на выходе ОУ ± 15 В). Очевидно, что при увеличении амплитуды сигнала источника увеличивается и область искажений сигнала на выходе

Рис. 19. Модель активного фильтра низких частот в SimPowerSystems .

Рис. 20. Сигнал на выходе активного фильтра низких частот.

Рис. 21. Фрагмент сигнала на выходе активного фильтра низких частот.