Трансмиссия        13.05.2022   

Атомный конструктор: реактор на столе. Ядерный реактор для дома Миниатюрный ядерный реактор своими руками

Может ли здание полностью обеспечивать себя электричеством, теплом, горячей водой и при этом еще продавать часть лишней энергии на сторону?

Конечно! Если вспомнить о старом, исключительно добром атоме и снабдить дом миниатюрным ядерным реактором. А как же экология и безопасность? Оказывается, и эти проблемы вполне можно решить, используя современные технологии. Именно так считают специалисты Министерства Энергетики США, занятые реализацией концепции т.н. «запечатанного» реактора.

Сама идея создания подобного устройства возникла еще около десяти лет назад в качестве рецепта для эффективного энергообеспечения развивающихся стран. Ее ключевым элементом является «малый запечатанный транспортабельный автономный реактор» (SSTAR), разработанный в Ливерморской Национальной лаборатории им. Лоуренса (Калифорния).

Особенностью этого изделия является полная невозможность извлечения радиоактивного вещества (не говоря уже о возможности его утечки). Это предполагалось основным условием для поставок устройств в государства т.н. «третьего» мира, дабы исключить соблазн использовать его содержимое для создания ядерного оружия. Полностью герметичный корпус, снабженный надежной системой сигнализации при попытке вскрытия, а внутри его – реактор с парогенератором, запечатанные как джинн в бутылке.

По мере углубления противоречий на мировом рынке энергоносителей, рынок все настойчивее диктует спрос на системы автономного энергообеспечения. С правовой же точки зрения широкое использование малогабаритных реакторов в развитых странах обещает гораздо меньше трудностей, нежели их поставки в страны развивающиеся. Как следствие, мечта о микро-АЭС все больше трансформируется в идею создания точечного генератора энергии на «вечном» топливе.

Существующие технологии использования SSTAR не предусматривают перезарядки активной зоны, а предполагаемый срок непрерывной работы составляет 30 лет. По истечении этого периода весь блок предлагается попросту заменять новым. Заметим, что реактор мощностью в 100 мегаватт вполне умещается в «бутылку» высотой в 15 и диаметром в 3 метра.

Эти показатели, весьма скромные для электростанции, представляются все же значительными, если речь идет про энергообеспечение отдельных объектов. Однако творческое развитие проекта показало возможности существенного уменьшения массо-габаритных характеристик при адекватном снижении мощности.

В дальнейшем конструкторы намерены продолжить работы по миниатюризации энергоблока и совершенствованию систем управления. Еще одним важным направлением является продление сроков работы «ядерной таблетки» до 40-50 лет, для чего внутри ее предполагается установка дополнительных экранирующих систем.

Итак, не исключено, что уже в ближайшем будущем практически вечный источник энергии можно будет устанавливать прямо в подвале каждого дома.

1. Свободнопоршневой двигатель Стирлинга работает от нагревания «атомным паром» 2. Индукционный генератор дает около 2 Вт электроэнергии для питания лампы накаливания 3. Характерное голубое свечение — это черенковское излучение электронов, выбитых из атомов гамма-квантами. Может служить в качестве отличного ночника!


Для детей от 14 лет Юный исследователь сможет самостоятельно собрать пусть и маленький, но настоящий ядерный реактор, узнать, что такое мгновенные и запаздывающие нейтроны, и увидеть динамику разгона и торможения цепной ядерной реакции. Несколько простых опытов с гамма-спектрометром позволят разобраться с наработкой различных продуктов деления и поэкспериментировать с воспроизводством топлива из модного ныне тория (кусочек сульфида тория-232 прилагается). Входящая в комплект книга «Основы ядерной физики для самых маленьких» содержит описание более 300 опытов с собранным реактором, так что простор для творчества огромен


Исторический прототип Набор Atomic Energy Lab (1951) давал возможность школьникам приобщиться к самой передовой области науки и технологии. Электроскоп, камера Вильсона и счетчик Гейгера-Мюллера позволяли провести множество интереснейших опытов. Но, конечно, не настолько интересных, как сборка действующего реактора из российского набора «Настольная АЭС»!

В 1950-х годах, с появлением атомных реакторов, перед человечеством, казалось бы, замаячили блестящие перспективы решения всех энергетических проблем. Инженеры-энергетики проектировали атомные электростанции, судостроители — атомные электроходы, и даже автоконструкторы решили присоединиться к празднику и использовать «мирный атом». В обществе возник «атомный бум», и промышленности стало не хватать квалифицированных специалистов. Требовался приток новых кадров, и была развернута серьезная образовательная компания не только среди студентов университетов, но и среди школьников. Например, A.C. Gilbert Company выпустила в 1951 году детский набор Atomic Energy Lab, содержащий несколько небольших радиоактивных источников, необходимые приборы, а также образцы урановой руды. Этот «наисовременнейший научный набор», как было написано на коробке, позволял «юным исследователям провести более 150 захватывающих научных экспериментов».

Кадры решают все

За прошедшие полвека ученые получили несколько горьких уроков и научились строить надежные и безопасные реакторы. И хотя сейчас в этой области наблюдается спад, вызванный недавней аварией на Фукусиме, вскоре он вновь сменится подъемом, и АЭС по‑прежнему будут рассматриваться как чрезвычайно перспективный способ получения чистой, надежной и безопасной энергии. Но уже сейчас в России чувствуется дефицит кадров, как ив 1950-х. Чтобы привлечь школьников и повысить интерес к атомной энергетике, Научно-производственное предприятие (НПП) «Экоатомконверсия», взяв пример с A.C. Gilbert Company, выпустила образовательный набор для детей от 14 лет. Разумеется, наука за эти полвека не стояла на месте, поэтому, в отличие от своего исторического прототипа, современный набор позволяет получить намного более интересный результат, а именно — собрать на столе самый настоящий макет атомной электростанции. Разумеется, действующий.

Грамотность с пеленок

«Наша компания родом из Обнинска- города, где атомная энергия знакома и привычна людям чуть ли не с детского сада, — объясняет «ПМ» научный руководитель НПП «Экоатомконверсия» Андрей Выхаданко. — И все понимают, что бояться ее совершенно не надо. Ведь по‑настоящему страшна лишь неизвестная опасность. Поэтому мы и решили выпустить этот набор для школьников, который позволит им вдоволь поэкспериментировать и изучить принципы работы атомных реакторов, не подвергая себя и окружающих серьезному риску. Как известно, знания, полученные в детстве, самые прочные, так что выпуском этого набора мы надеемся значительно понизить вероятность повторения Чернобыля или

Фукусимы в будущем».

Ненужный плутоний

За годы работы множества АЭС скопились тонны так называемого реакторного плутония. Он состоит в основном из оружейного Pu-239, содержащего около 20% примеси других изотопов, в первую очередь Pu-240. Это делает реакторный плутоний абсолютно непригодным для создания ядерных бомб. Отделение примеси оказывается весьма сложным, так как разница масс между 239-м и 240-м изотопами — всего 0,4%. Изготовление ядерного топлива с добавкой реакторного плутония оказалось технологически сложным и экономически невыгодным, так что этот материал остался не у дел. Именно «бросовый» плутоний и использован в «Наборе юного атомщика», разработанном НПП «Экоатомконверсия».

Как известно, для начала цепной реакции деления ядерное топливо должно иметь определенную критическую массу. Для шара из оружейного урана-235 она составляет 50 кг, из плутония-239 — только 10. Оболочка из отражателя нейтронов, например бериллия, может снизить критическую массу в несколько раз. А использование замедлителя, как в реакторах на тепловых нейтронах, снизит критическую массу более чем в десять раз, до нескольких килограммов высокообогащенного U-235. Критическая масса Pu-239 и вовсе составит сотни граммов, и именно такой сверхкомпактный реактор, умещающийся на столе, разработали в «Экоатомконверсии».

Что в сундучке

Упаковка набора скромно оформлена в черно-белых тонах, и лишь неяркие трехсегментные значки радиоактивности несколько выделяются на общем фоне. «Никакой опасности на самом деле нет, — говорит Андрей, указывая на слова «Совершенно безопасно!», написанные на коробке. — Но таковы требования официальных инстанций». Коробка тяжеленная, что неудивительно: в ней находится герметичный транспортировочный свинцовый контейнер с тепловыделяющей сборкой (ТВС) из шести плутониевых стержней с циркониевой оболочкой. Помимо этого набор включает внешний корпус реактора из термостойкого стекла с химической закалкой, крышку корпуса со стеклянным окном и гермовводами, корпус активной зоны из нержавеющей стали, подставку под реактор, управляющий стержень-поглотитель из карбида бора. Электрическая часть реактора представлена свободнопоршневым двигателем Стирлинга с соединительными полимерными трубками, маленькой лампой накаливания и проводами. В комплект также входят килограммовый пакет с порошком борной кислоты, пара защитных костюмов с респираторами и гамма-спектрометр со встроенным гелиевым детектором нейтронов.

Постройка АЭС

Сборка действующего макета АЭС по прилагаемому руководству в картинках очень проста и занимает менее получаса. Надев стильный защитный костюм (он нужен только на время сборки), вскрываем герметичную упаковку с ТВС. Затем вставляем сборку внутрь корпуса реактора, накрываем корпусом активной зоны. Под конец защелкиваем сверху крышку с гермовводами. В центральный нужно вставить до конца стержень-поглотитель, а через любой из двух других заполнить активную зону дистиллированной водой до черты на корпусе. После заполнения к гермовводам подключаются трубки для пара и конденсата, проходящие через теплообменник двигателя Стирлинга. Сама АЭС на этом закончена и готова к запуску, остается лишь поместить ее на специальную подставку в аквариум, заполненный раствором борной кислоты, который отлично поглощает нейтроны и защищает юного исследователя от нейтронного облучения.

Три, два, один — пуск!

Подносим гамма-спектрометр с датчиком нейтронов вплотную к стенке аквариума: небольшая часть нейтронов, не представляющая угрозы для здоровья, все-таки выходит наружу. Медленно поднимаем регулировочный стержень до начала быстрого роста потока нейтронов, означающего запуск самоподдерживающейся ядерной реакции. Остается только дождаться выхода на нужную мощность и на 1 см по меткам вдвинуть стержень назад, чтобы скорость реакции стабилизировалась. Как только начнется кипение, в верхней части корпуса активной зоны появится прослойка пара (перфорация в корпусе не позволяет этой прослойке оголить плутониевые стержни, что могло бы привести к их перегреву). Пар по трубке идет вверх, к двигателю Стирлинга, там он конденсируется и стекает по выходной трубке вниз внутрь реактора. Разность температур между двумя концами двигателя (один нагревается паром, а другой охлаждается комнатным воздухом) преобразуется в колебания поршня-магнита, а тот, в свою очередь, наводит переменный ток в окружающей двигатель обмотке, зажигая атомный свет в руках юного исследователя и, как надеются разработчики, атомный интерес в его сердце.

Примечание редакции: данная статья опубликована в апрельском номере журнала и является первоапрельским розыгрышем.

Материалу.

Запуск первого в мире искусственного ядерного реактора

2 августа мир облетели новости из благополучной Швеции. "Мужчина собрал у себя на кухне ядерный реактор", - кричали заголовки, и перед взором падкого на сенсации обывателя представала фантастического вида установка, скрытая под переплетением труб и проводов, внутри которой происходили те самые ядерные реакции. Масла в огонь подлило и то, что на строительство своего детища швед потратил чуть менее тысячи долларов, а радиоактивные материалы для реактора якобы получил из-за рубежа.

Понятное дело, что на просторах интернета тут же началось обсуждение произошедшего. Кто-то вспомнил Андерса Брейвика, посетовав на то, что скандинавы стали попадать в новости по крайне опасным поводам; кто-то обеспокоился, не окажутся ли подобные технологии в руках террористов; а кто-то заинтересовался тем, какое практическое применение можно найти изобретению загадочного Ричарда (до сих пор известно только предполагаемое имя умельца, да и то лишь потому, что блог, в котором создатель реактора подробно отчитывался о ходе проекта, назывался "Реактор Ричарда"). Как это часто бывает, в действительности история оказалась гораздо менее фантастической, чем казалась на первый взгляд - работающий реактор Ричард так и не построил, да и вообще, похоже, всего лишь пытался повторить подвиг легендарного Радиоактивного бойскаута.

Веб-дизайнер из Нью-Йорка и Радиоактивный бойскаут

Прежде, чем перейти к истории Ричарда, следует отметить два важных факта. Во-первых, домашний ядерный реактор - не такая уж большая редкость по нынешним временам. Например, в июне 2010 года некто Марк Саппс, известный преимущественно как веб-дизайнер для дома "Гуччи", стал 38-м частным лицом (среди этих энтузиастов, у которых имеется собственный сайт, есть, например, 15-летний школьник из Мичигана), осуществившим у себя дома реакцию ядерного синтеза (Ричард, напомним, интересовался распадом). Установка Саппса (на которую он, к слову, потратил около 40 тысяч долларов) потребляет энергии больше, чем производит. Вместе с тем из истории с веб-дизайнером можно составить общее представление о доступности ядерных технологий в современном мире.

Во-вторых, Ричард явно пошел по стопам 17-летнего американского школьника Дэвида Кана - технологии обоих физиков-энтузиастов совпадают по множеству пунктов, включая подбор сырья в виде использованных детекторов дыма, старых часов и сеток для керосиновых ламп. Именно поэтому, прежде чем говорить о шведе, необходимо рассказать историю простого американского школьника, получившего в прессе прозвище Радиоактивный бойскаут.

В июне 1995 года в небольшой город в штате Мичиган нагрянули люди в защитных антирадиационных костюмах. Вместо того чтобы, как положено в фантастическом фильме, эвакуировать людей, они стали разбирать небольшой сарайчик на заднем дворе местной жительницы по имени Пэтти Кан. Строение распиливали на мелкие куски, которые потом осторожно укладывали в большие металлические контейнеры с характерным трилистником на желтом фоне. Оказалось, что в сарае хранились радиоактивные материалы, которые принадлежали сыну Пэтти по имени Дэвид - на тот момент 17-летнему молодому человеку.

С 12 лет Дэвид увлекался химией, а потом заинтересовался и ядерной физикой. Вероятно, именно тогда ему и пришла в голову идея построить прямо у себя дома ядерный реактор (в данном случае, в отличие от Саппса, речь идет о реакциях, при которых элементы превращаются друг в друга с испусканием элементарных частиц). Однако после одного из экспериментов, который окончился взрывом, мать запретила молодому человеку заниматься опытами в доме. Поэтому Дэвид, втайне от Пэтти, перевез лабораторию в сарай. Надо сказать, что информацию, необходимую для создания реактора, молодой Кан собирал практически по крупицам - притворяясь то студентом, работающим над докладом, то школьным учителем физики, он звонил, писал в самые разные организации, включая Комиссию по ядерной регламентации США, где молодому "учителю" дали много дельных советов. Когда теоретическая часть подготовки была завершена, молодой человек приступил к практическому осуществлению проекта.

Изначально его целью было просто провести какую-нибудь ядерную реакцию, и он решил собрать нейтронную пушку - источник направленных нейтронов. Для этого ему потребовался источник альфа-частиц (то есть частиц, состоящих из двух протонов и двух нейтронов). В качестве него выступил америций-241. Оказалось, что этот материал использовался в небольших количествах при изготовлении старых детекторов дыма - совет по извлечению материала из деталей Кану дали в одной электротехнической компании из Иллинойса. Достав америций, Кан поместил его в свинцовую камеру с маленькой дырочкой, обмотанную фольгой. Облучение алюминиевой фольги, прикрывающей отверстие, позволило получить поток нейтронов.

В качестве цели для нейтронной пушки использовался торий-232, который, как выяснилось, в большом количестве присутствует в сетках, используемых в старых (в том числе и керосиновых) лампах. При помощи лития и нехитрых химических реакций Дэвид получил достаточно чистый торий в концентрации, в 170 раз превышающей допустимую Комиссией по ядерной регламентации. Кан планировал облучать торий нейтронами, чтобы получить торий-233 (его период полураспада - чуть более 22 минут), который бы, в результате последующего распада превращался в протактиний (период полураспада - 27 дней), а затем - в уран-233. Оказалось, однако, что нейтронная пушка Дэвида выстреливала слишком мало нейтронов, и все они были слишком быстрые, что в мире ядерной физики, основанном на вероятности, не позволяло проводить нужную реакцию.

Дэвид решил усовершенствовать пушку. Для этого он стал собирать радий - радиоактивный элемент, который встречается в старых часах: краской, содержащей этот элемент, покрывали стрелки часов, светящиеся в темноте. Вместо алюминия в пушке Кан использовал бериллий, образец которого по просьбе Дэвида из школьной коллекции минералов стащил его приятель. Что выступало в качестве замедлителя нейтронов, неизвестно, но швед Ричард рекомендовал использовать парафин, графит, бор или кадмий. Как бы то ни было, но пушка Дэвида заработала. В качестве объекта для облучения выступал порошок из декоративных бус, содержащих некоторое количество урана. Как на практике выглядит подобная пушка и как, используя перечисленные материалы, можно собрать некоторое подобие реактора, подробно рассказывается в этом ролике.

Надо сказать, что Дэвид закончил плохо. Он служил во флоте, когда в начале 2000-х годов его нашли журналисты - в то время про него как раз выходила книга "Радиоактивный бойскаут". Дэвид рассказал им, что планирует посвятить свою жизнь ядерной физике. В 2007 году, однако, он был арестован при попытке украсть детекторы дыма из одного здания. После этого он оказался в тюрьме, и с этого момента его следы теряются. Надо сказать, что на фотографиях в день задержания Дэвид Кан выглядел очень неважно - многие полагают, из-за неугасшей одержимости радиоактивными материалами, которые окончательно подорвали ему здоровье.

Шведский реакторостроитель

Ричард начал вести свой блог (довольно, надо сказать, бессодержательный) в мае 2011 года, причем с самого начала объявил, что строит свой реактор просто так, ради забавы.

Далее, в течение нескольких постов он, как это принято у большинства блогеров, то есть без всяких ссылок, описывает способы получения радия, тория и америция, которыми пользовался Дэвид Кан. Есть в блоге даже упоминание о пресловутых бусинах, в которых содержится уран. При этом никаких результатов экспериментов или хотя бы изображения реактора в его блоге так и не появилось. Максимум, что там есть - это несколько моделей нейтронных пушек, одна из которых собрана в пластиковом медицинском пузырьке.

Наконец, предпоследний пост (21 мая) был посвящен тому, что Ричард попытался "сварить" америциум, радий и бериллий в кислоте, чтобы они лучше смешались (вероятно, для создания нейтронной пушки), однако это привело к взрыву. Последнее сообщение в блоге датируется 21 июля. В нем автор пишет, что был задержан полицией, а все радиоактивные материалы у него конфисковали.

Эта информация совпадает с версией, представленной в местной газете Helsingborgs Dagblad, которая и стала, судя по всему, источником сенсационной новости. По данным издания, молодой мужчина сам обратился в Комитет по ядерной энергетике с вопросом, не нарушает ли он закон, сооружая у себя на кухне ядерный реактор. Оказалось, что нарушает - именно так Ричард и очутился в полиции.

Вот такая история. Так как в течение двух месяцев Ричард ничего не писал в блоге, никаких особых успехов в построении реактора, видимо, он не достиг. Да и вообще, слишком большое сходство экспериментов Ричарда с историей Радиоактивного бойскаута заставляет усомниться в реальности предпринятой им попытки. Одно можно сказать точно уже сейчас: сенсация не состоялась.

Ядерные "чудеса" рядом с нами

Старый детектор дыма. Здесь америций

Бериллий

Из этих сеточек можно извлечь торий

Нейтронная пушка

Стрелки часов с радием

Брелок с тритием

Немного урана в бусинке


Вы знаете, чем занимается ваш сын по вечерам? Тогда, когда он говорит, что пошел на дискотеку, или на рыбалку, или на свидание? Нет, я далек от мысли, что он колется, или пьет портвейн с дружками, или грабит запоздалых прохожих, все это было бы слишком заметно. Но как знать, может, он собирает в сарае ядерный реактор...

На въезде в городок Голф-Манор, что в 25 км от Детройта, штат Мичиган, висит большой плакат, на котором аршинными буквами написано: "У нас много детей, но мы их все равно экономим, поэтому, водитель, двигайся осторожней". Предупреждение абсолютно излишнее, поскольку чужие здесь появляются чрезвычайно редко, а местные и так особо не гоняют: на полутора километрах, а именно такова протяженность центральной улицы города, особо не разгонишься.

Конечно, сотрудники Агентства по защите окружающей среды (EPA), когда планировали начало зачистки заднего двора частного владения мистера Майкла Поласека и миссис Патти Хан на час ночи, руководствовались вполне разумными соображениями. В такое позднее время жители провинциального городка должны были спать, а поэтому разобрать и вывезти сарай миссис Хан со всем его содержимым можно было, не вызывая лишних вопросов и не создавая паники, которую обычно навевают на гражданское население контейнеры со значком: "Осторожно, радиация!" Но из каждого правила бывают исключения. На этот раз им стала соседка миссис Хан -- Дотти Пеас. Загнав свой автомобиль в гараж, она вышла на улицу и увидела, что во дворе напротив копошатся одиннадцать одетых в радиозащитные серебристые скафандры человек.

Взволнованная Дотти, разбудив мужа, заставила его пойти к рабочим и выяснить, чем они там занимаются. Мужчина нашел старшего и потребовал от него объяснений, в ответ на что услышал, что волноваться нет причин, что ситуация находится под контролем, радиационное заражение невелико и опасности для жизни не представляет.

Под утро рабочие погрузили в контейнеры последние блоки сарая, сняли верхний слой почвы, погрузили все свое добро на грузовики и покинули место действия. На вопросы соседей миссис Хан и мистер Поласек отвечали, что они и сами не знают, чем вызван такой интерес к их сараю со стороны EPA. Постепенно жизнь в городе вошла в нормальное русло, и, если бы не дотошные журналисты, возможно, так никто бы никогда и не узнал, чем так досадил сотрудникам EPA сарай Патти Хан.

До десяти лет Дэвид Хан рос как обычный американский подросток. Его родители, Кен и Патти Хан, были в разводе, Дэвид жил с отцом и его новой женой Кэтти Миссинг недалеко от Голф-Манора, в городке Клинтон. По выходным Дэвид ездил в Голф-Манор к матери. У той были свои проблемы: ее новый избранник сильно пил, а поэтому ей было особо не до сына. Пожалуй, единственным человеком, кто сумел понять душу подростка, оказался его сводный дед, отец Кэтти, который и подарил юному бойскауту на десятилетний юбилей толстую "Золотую книгу химических экспериментов".

Книга была написана простым языком, в ней в доступной форме рассказывалось, как оборудовать домашнюю лабораторию, как сделать искусственный шелк, как получить спирт и так далее. Дэвид настолько увлекся химией, что уже спустя два года принялся за отцовские институтские учебники.

Родители были рады новому увлечению сына. Между тем Дэвид соорудил в своей спальне весьма приличную химическую лабораторию. Мальчик взрослел, эксперименты становились все смелее, в тринадцать лет он уже свободно изготовлял порох, а в четырнадцать дорос до нитроглицерина.

К счастью, сам Дэвид при экспериментах с последним почти не пострадал. Зато спальня была разрушена практически полностью: окна вылетели, встроенный шкаф вмят в стену, обои и потолок безнадежно испорчены. В качестве наказания отец подверг Дэвида порке, а лабораторию, или, вернее, то, что от нее осталось, пришлось перенести в подвал.

Тут мальчик развернулся вовсю. Тут его уже никто не контролировал, тут он мог ломать, взрывать и крушить столько, сколько требовалось его химической душе. Карманных денег на эксперименты уже не хватало, и мальчик начал зарабатывать средства сам. Он мыл посуду в бистро, работал на складе, в бакалейном магазине.

Между тем взрывы в подвале происходили все чаще, а мощность их все росла. Во имя спасения дома от уничтожения Дэвиду был поставлен ультиматум: или он переходит к менее опасным опытам, или его подвальная лаборатория будет уничтожена. Угроза сработала, и семья целый месяц жила спокойной жизнью. Пока однажды поздним вечером дом не сотряс мощный взрыв. Кен бросился в подвал, где и обнаружил сына, лежащего без сознания с опаленными бровями. Взорвался брикет красного фосфора, который Дэвид пытался раскрошить с помощью отвертки. С этого момента всякие опыты в пределах отцовской собственности были категорически запрещены. Однако у Дэвида оставалась еще запасная лаборатория, оборудованная в сарае у мамы, в Голф-Маноре. В ней и развернулись основные события.

Сейчас отец Дэвида говорит, что во всем виноваты бойскаутизм и непомерное честолюбие сына. Он во что бы то ни стало желал получить высший знак отличия -- Бойскаутского Орла. Однако для этого, по правилам, нужно было заработать 21 специальный знак отличия, одиннадцать из которых даются за обязательные навыки (умение оказать первую помощь, знание основных законов сообщества, умение развести костер без спичек и так далее), а десять -- за достижения в любых, выбранных самим скаутом, областях.

10 мая 1991 года четырнадцатилетний Дэвид Хан сдал своему скаутмастеру Джо Ауито написанную им для получения очередного значка отличия брошюру, посвященную проблемам ядерной энергетики. При ее подготовке Дэвид обращался за помощью в компанию "Вестингауз электрик" и Американское ядерное общество, в Электрический институт Эдисона, а также в компании, занимающиеся управлением атомными электростанциями. И везде встречал самое горячее понимание и искреннюю поддержку. В качестве дополнения к брошюре была приложена модель ядерного реактора, сделанная из алюминиевой пивной банки, одежной вешалки, соды, кухонных спичек и трех мусорных пакетов. Однако все это для кипящей души юного бойскаута с выраженными ядерными наклонностями казалось слишком мелким, и поэтому следующим этапом своей работы он выбрал строительство настоящего, только небольшого, ядерного реактора.

Пятнадцатилетний Дэвид решил для начала построить реактор, превращающий уран-235 в уран-236. Для этого ему требовалось совсем немного, а именно -- добыть некоторое количество собственно 235-го урана. Для начала мальчик составил список организаций, которые могли бы ему помочь в его начинаниях. В него вошли Министерство энергетики, Американское ядерное общество, Комиссия по ядерному урегулированию, Электрический институт Эдисона, Атомный индустриальный форум и так далее. Дэвид писал по двадцать писем в день, в которых, представляясь преподавателем физики из Высшей школы в Чиппеве-Валли, просил оказать ему информационную помощь. В ответ он получил просто тонны информации. Правда, большая часть ее оказалась совершенно бесполезной. Так, организация, на которую мальчик возлагал самые большие надежды, Американское ядерное общество, прислало ему книжку комиксов "Goin. Реакция расщепления", в которой Альберт Эйнштейн говорил: "Я -- Альберт. Und сегодня ve проведем реакция расщепления ядра. Ich не иметь в виду ядро пушки, ich говорить про ядро атома..."

Однако в этом списке оказались и организации, оказавшие юному ядерщику поистине неоценимые услуги. Начальник отдела производства и распределения радиоизотопов Комиссии по ядерному урегулированию Дональд Эрб сразу проникся к "профессору" Хану глубокой симпатией и вступил с ним в длительную научную переписку. Довольно много информации "учитель" Хан получил из обычной прессы, которую он завалил вопросами типа: "Расскажите, пожалуйста, как производится такое-то вещество?"

Уже спустя неполных три месяца Дэвид имел в своем распоряжении список, состоявший из 14 необходимых изотопов. Еще месяц ушел на то, чтобы выяснить, где эти изотопы можно найти. Как оказалось, америций-241 применялся в дымовых датчиках, радий-226 -- в старых часах со светящимися стрелками, уран-235 -- в черной руде, а торий-232 -- в сетках-рассекателях газовых фонарей.

Начать Дэвид решил с америция. Первые дымовые датчики он украл ночью из палаты бойскаутского лагеря в то время, когда остальные мальчики отправились в гости к жившим неподалеку девочкам. Однако десяти датчиков для будущего реактора было крайне мало, и Дэвид вступил в переписку с компаниями-производителями, одна из которых согласилась продать настырному "педагогу" для лабораторных работ сто бракованных приборов по цене $1 за штуку.

Мало было датчики получить, надо было еще понять, где у них там америций находится. Для того чтобы получить ответ на этот вопрос, Дэвид связался с другой фирмой и, представившись директором строительной компании, сказал, что он хотел бы заключить договор на поставку крупной партии датчиков, но ему рассказали, что при его производстве используется радиоактивный элемент, и теперь он боится, что радиация "просочится" наружу. В ответ на это милая девушка из отдела по работе с клиентами сообщила, что, да, радиоактивный элемент в датчиках присутствует, но "...для тревоги причин нет, так как каждый элемент запакован в специальную, устойчивую к коррозии и повреждениям золотую оболочку".

Извлеченный из датчиков америций Дэвид поместил в свинцовый корпус с крошечным отверстием в одной из стенок. По замыслу создателя, из этого отверстия должны были выходить альфа-лучи, являющиеся одним из продуктов распада америция-241. Альфа-лучи, как известно, представляют собой поток нейтронов и протонов. Для того чтобы отфильтровать последние, Дэвид поставил перед отверстием лист алюминия. Теперь алюминий поглощал протоны и давал на выходе относительно чистый нейтронный луч.

Для дальнейшей работы ему требовался уран-235. Сначала мальчик решил найти его самостоятельно. Он исходил со счетчиком Гейгера в руках все ближайшие окрестности, надеясь найти хоть что-нибудь, напоминающее черную руду, однако самое большое, что ему удалось отыскать, это пустой контейнер, в котором когда-то эту руду перевозили. И юноша опять взялся за перо.

На этот раз он связался с представителями чешской фирмы, занимавшейся продажей небольших партий урансодержащих материалов. Фирма незамедлительно выслала "профессору" несколько образцов черной руды. Дэвид же незамедлительно раздолбил образцы в пыль, которую затем, в надежде выделить чистый уран, растворил в азотной кислоте. Полученный раствор Дэвид пропустил через кофейный фильтр, надеясь, что куски нерастворенной руды осядут в его недрах, в то время как уран пройдет через него свободно. Но тут его постигло жуткое разочарование: как оказалось, он несколько переоценил способность азотной кислоты растворять уран, и весь необходимый металл остался в фильтре. Что делать дальше, мальчик не знал.

Однако он не стал отчаиваться и решил попытать счастья с торием-232, который потом, с помощью той же нейтронной пушки, планировал превратить в уран-233. На складе уцененных товаров он купил около тысячи ламповых сеток-рассекателей, которые паяльной лампой пережег в золу. Затем он на тысячу долларов накупил литиевых батареек, кусачками извлек из них собственно литий, смешал его с золой и нагрел в пламени паяльной лампы. В результате литий отобрал из золы кислород, а Дэвид получил торий, уровень очистки которого в

9000 раз превышал уровень его содержания в природных рудах и в 170 раз -- уровень, который требовал лицензирования от Комиссии по ядерному урегулированию. Теперь оставалось только направить нейтронный луч на торий и ждать, когда он превратится в уран.

Однако тут Дэвида ждало новое разочарование: мощности его "нейтронной пушки" явно не хватало. Для того чтобы повысить "боеспособность" оружия, нужно было подобрать америцию достойную замену. Например, радий.

С ним все было несколько проще: вплоть до конца 60-х светящейся радиевой краской покрывались стрелки часов, автомобильные и самолетные приборы и прочие вещи. И Дэвид отправился в экспедицию по автомобильным свалкам и антикварным магазинам. Как только ему удавалось отыскать что-нибудь люминесцентное, он тут же приобретал эту вещь, благо старые часы много не стоили, и аккуратно соскребал с них краску в специальный пузырек. Работа шла чрезвычайно медленно и могла растянуться на многие месяцы, если бы Дэвиду не помог случай. Как-то, проезжая на своем стареньком "понтиаке-6000" по улице родного городка, он обратил внимание, что смонтированный им на приборной панели счетчик Гейгера внезапно заволновался и заверещал. Недолгие поиски источника радиоактивного сигнала привели его в антикварный магазин миссис Глории Генетт. Тут он нашел старые часы, у которых радиевой краской был закрашен весь циферблат. Заплатив $10, юноша унес часы домой, где и подверг их вскрытию. Результаты превзошли все ожидания: кроме окрашенного циферблата, он нашел спрятанный за задней стенкой часов полный флакончик радиевой краски, по-видимому, оставленный там забывчивым часовщиком.

Для того чтобы получить чистый радий, Дэвид использовал сульфат бария. Смешав барий и краску, он расплавил получившийся состав, а расплав опять же пропустил через кофейный фильтр. На этот раз у Дэвида все получилось: барий абсорбировал примеси и застрял в фильтре, в то время как радий прошел через него беспрепятственно.

Как и прежде, Дэвид поместил радий в свинцовый контейнер с микроскопическим отверстием, только на пути луча, по совету его старого друга из Комиссии по ядерному урегулированию доктора Эрба, он поставил не алюминиевую пластину, а бериллиевый экран, украденный из школьного кабинета химии. Полученный нейтронный луч он направил на торий и на урановый порошок. Однако если радиоактивность тория понемногу начала расти, то уран оставался без изменений.

И тут на помощь шестнадцатилетнему "профессору" Хану вновь пришел доктор Эрб. "Нет ничего удивительного, что в вашем случае ничего не происходит, -- разъяснил он лжепедагогу ситуацию. -- Описанный вами нейтронный луч слишком быстр для урана. В таких случаях для его замедления используются фильтры из воды, дейтерия или, скажем, трития". В принципе Дэвид мог использовать воду, но он счел это компромиссом и пошел по другому пути. Используя прессу, он выяснил, что тритий используется при производстве светящихся прицелов для спортивных ружей, луков и арбалетов. Далее его действия были просты: юноша покупал в спортивных магазинах луки и арбалеты, счищал с них тритиевую краску, нанося вместо нее обычный фосфор, и сдавал товар обратно. Собранным тритием он обработал бериллиевый экран и вновь направил нейтронный поток на урановый порошок, уровень радиации которого уже через неделю значительно вырос.

Наступила очередь создания самого реактора. За основу скаут взял модель реактора, используемого при получении оружейного плутония. Дэвид, которому к тому времени было уже семнадцать, решил использовать накопленный материал. Совершенно не заботясь о безопасности, он извлек из своих пушек америций и радий, смешал их с алюминиевым и бериллиевым порошком и завернул "адскую смесь" в алюминиевую фольгу. То, что еще недавно было нейтронным оружием, превратилось теперь в ядро для импровизированного реактора. Получившийся шар он обложил обернутыми также в фольгу чередующимися кубиками с ториевой золой и урановым порошком и сверху обмотал всю конструкцию толстым слоем скотча.

Конечно, "реактор" был далек от того, что можно считать "промышленным образцом". Сколь-нибудь ощутимого тепла он не давал, зато его радиационное излучение росло не по дням, а по часам. Вскоре уровень радиации вырос настолько, что дэвидов счетчик начинал тревожно трещать уже в пяти кварталах от дома матери. Только тогда юноша понял, что он собрал в одном месте слишком много радиоактивного материала и с такими играми пора завязывать.

Он разобрал свой реактор, сложил торий и уран в ящик для инструментов, радий и америций оставил в подвале, а все сопутствующие материалы решил вывезти на своем "понтиаке" в лес.

В 2.40 ночи 31 августа 1994 года в полицию города Клинтон позвонил неизвестный и сообщил, что кто-то, по-видимому, пытается украсть покрышки с чьей-то машины. Оказавшийся этим "кем-то" Дэвид объяснил подъехавшим полицейским, что он просто ждет друга. Полицейских ответ не удовлетворил, и они попросили юношу открыть багажник. Там они обнаружили массу странных вещей: поломанные часы, провода, ртутные выключатели, химические реактивы и около пятидесяти завернутых в фольгу упаковок с неизвестным порошком. Но наибольшее внимание полицейских привлек закрытый на замок ящик. На просьбу открыть его Дэвид ответил, что этого делать нельзя, поскольку содержимое ящика страшно радиоактивно.

Радиация, ртутные выключатели, часовые механизмы... Ну какие еще ассоциации могли вызвать эти вещи у офицера полиции? В 3 часа ночи в офис окружной полиции ушла информация о том, что в городе Клинтон штата Мичиган силами местной полиции задержана машина с взрывным устройством, предположительно -- с ядерной бомбой.

Прибывшая наутро команда саперов, осмотрев машину, успокоила местное начальство, заявив, что "взрывное устройство" в действительности таковым не является, но тут же повергло его в шок сообщением о том, что в автомобиле обнаружено большое количество радиационно опасных материалов.

На допросах Дэвид упорно молчал. Лишь в конце ноября он поведал следствию о тайнах материнского сарая. Все это время отец и мать Дэвида, напуганные мыслями о том, что их дома могут быть конфискованы полицией, занимались уничтожением улик. Сарай был очищен от всякого "мусора" и моментально наполнен овощами. О прежнем его содержимом теперь напоминал только высокий, более чем в 1000 раз превышающий фоновый, уровень радиации. Который и зарегистрировали посетившие его 29 ноября представители ФБР. Спустя почти год после ареста Дэвида представители агентства по охране окружающей среды добились судебного решения о сносе сарая. Его демонтаж и захоронение на свалке радиоактивных отходов в районе Грейт-Солт-Лейка обошлись родителям "радиоактивного бойскаута" в $60 000.

После уничтожения сарая Дэвид впал в глубокую депрессию. Вся его работа пошла, что называется, коту под хвост. Члены его бойскаутского отряда давать ему Орла отказались, заявив, что его опыты вовсе не были полезны людям. Вокруг него царила атмосфера подозрительности и недоброжелательства. Отношения с родителями после уплаты штрафа испортились безнадежно. После окончания Дэвидом колледжа отец поставил сыну новый ультиматум: или он идет служить в Вооруженные силы, или его выгоняют из дому.


Сейчас Дэвид Хан служит сержантом на атомном авианосце ВМФ США "Энтерпрайз". Правда, к ядерному реактору его, в память прошлых заслуг и во избежание возможных неприятностей, близко не подпускают. На полке в его кубрике стоят книжки о стероидах, меланине, генетике, антиоксидантах, ядерных реакторах, аминокислотах и уголовном праве. "Я уверен, что своими опытами отнял у себя не больше пяти лет жизни, -- говорит он изредка посещающим его журналистам. -- Поэтому у меня еще есть время для того, чтобы сделать для людей что-нибудь полезное".